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ABSTRACT

Multi-period volatility forecasting is crucial for financial decision-making. We consider a scenario where

the decision-maker specifies an ex-ante loss function, such as the QLIKE, to assess the accuracy of

multi-period volatility forecasts from a candidate volatility model. To reduce the impact of model mis-

specification on forecast accuracy, we introduce an estimator that is ‘matched’ to the specification of

the forecast evaluation loss function. We examine the estimator’s performance under a bias-variance

trade-off, highlighting conditions where it is likely to offer improvements over standard estimation meth-

ods. We also propose a model misspecification test based on the Hausman principle, which exploits

the fact that our estimator and the standard estimator are consistent for the true parameter under the

null of correct specification but converge to different pseudo-true values under the alternative. In a

Monte Carlo study, we examine the misspecification with respect to long-memory dynamics. Our results

show that the misspecification test is reasonably sized and has power that increases with the degree of

long-memory misspecification. Additionally, we recover multi-period volatility forecasts and find that

under correct specification, both estimators perform equivalently; however, under misspecification, our

estimator provides superior forecast accuracy. Finally, an out-of-sample analysis across ten return and

realised measure series from 2001 to 2010 suggests three key findings: first, it is optimal for our estimator

to match the estimation loss function to a shorter horizon than the forecasting horizon; second, our esti-

mator provides greater accuracy gains for GARCH-type volatility models applied to realised measures of

volatility compared to those applied to returns; and third, our estimator leads to greater accuracy gains

for underparameterised models (which are more likely to be misspecified), highlighting the bias-variance

trade-off.

Keywords: multi-period volatility forecasts, GARCH models, long-memory models, misspecification test,

realised measures.
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1. INTRODUCTION

Volatility forecasting is central in asset allocation, risk management, and pricing of derivatives across

various financial institutions. Particularly relevant to financial decisions are volatility forecasts of cu-

mulative (multi-period) returns across various time horizons, ranging from one week to several months,

depending on the application and the asset class. To ensure consistency in assessing these forecasts, fi-

nancial institutions typically maintain their decision-making processes around a baseline model evaluated

using a specified ex-ante loss function by a decision-maker. A widely used class of models for generating

volatility forecasts is the GARCH class, pioneered by Engle (1982) and Bollerslev (1986). Parameters

of these models are commonly estimated using the Gaussian quasi-maximum likelihood (QML) method.

The resulting parameter estimates are subsequently used to generate one-period-ahead forecasts, which

are iterated forward to achieve the desired horizon of volatility forecasts.

However, this approach of constructing forecasts is sensitive to model misspecification: even minor

model misspecification can adversely affect the performance of a volatility model, as highlighted by

Andersen et al. (2004) and Sizova (2011). As an example, consider the workhorse GARCH(1,1) model,

which imposes mean reversion with a geometric rate on volatility, contradicting the presence of higher

persistence in volatility known as long-memory (Baillie et al., 1996; Granger & Ding, 1996; Mandelbrot

& Van Ness, 1968). In this case, the iteration of one-period-ahead GARCH(1,1) forecasts using the

dynamically misspecified functional form implied by mean reversion may result in significant inaccuracies

in forecasts, especially when considering large forecasting horizons. Since the true model is generally

unknown, model misspecification is practically unavoidable.

In this paper, we propose a parameter estimation method for the GARCH class of volatility models

to improve the accuracy of forecasts. To optimize a potentially misspecified model, we propose estimat-

ing the parameters of a given model by minimising the same loss function used to evaluate forecasts.

In particular, our estimation method focuses on minimizing a quasi-likelihood (QLIKE) loss function

specified directly for the volatility of cumulative returns, as the QLIKE function is typically used to

assess the accuracy of volatility forecasts (Bauwens et al., 2012). By matching estimation and evaluation

objectives, we ensure that our estimation method is consistent with respect to the forecasting objective,

as established by Hansen and Dumitrescu (2022). In alignment with its purpose, we refer to our method

as the horizon-matched (HM) method, with the resulting estimator also named horizon-matched.

A crucial feature of our approach is that, while we target the cumulative return variance in the esti-

mation, the baseline volatility model remains unchanged, continuing to specify the volatility dynamics

of daily returns. Doing that allows us to establish consistency of the proposed estimator for the true

parameter under the correct model specification. However, targeting cumulative variance in the esti-

mation increases the estimator’s variance, whether or not the model is correctly specified. Building on

this, we theoretically examine the forecasting performance of our estimator in a bias-variance trade-off

framework. First, we show that when the model is correctly specified, the improvement potential of our

estimator over the standard estimator is limited, as the difference in expected forecasting losses is driven

by the difference in variances of the estimators. Second, when the model is misspecified, our estimator

enhances the model fit by construction. However, the benefits for forecasting depend on ensuring that

this improved fit is not offset by increased estimation error. Since volatility models used by financial

institutions are typically misspecified, despite this bias-variance trade-off, we believe and show that our

estimator is of practical use.

The horizon-matched estimation method applies not only to the standard GARCH class of volatil-

ity models, which specify the conditional distribution of returns, but also to GARCH-type models for
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the conditional distribution of realised measures of volatility derived from high-frequency intraday data.

Inspired by Andersen and Bollerslev (1998), recent research has increasingly popularised models inte-

grating high-frequency information to forecast the volatility of daily or cumulative returns, as it has been

established that, under some regularity conditions, realised measures serve as consistent estimators of

daily squared volatility and are less noisy than squared daily returns. We demonstrate the application of

our method across a range of models, starting with the simplest MEM model introduced by Engle (2002)

and Engle and Gallo (2006) and extending to more advanced models such as the HEAVY model by

Shephard and Sheppard (2010) and the Realised GARCH model by Hansen et al. (2012). Additionally,

our method can be applied to pure-time series models for realised measures, as categorised by Hansen

and Lunde (2011), including the widely used HAR model developed by Corsi (2009).

This paper is not the first to propose a method for mitigating the impact of model misspecification

on forecasts. A ‘direct’ approach has been introduced in the forecasting literature with this purpose.

This approach involves estimating parameters, defining a model for multi-period variables of interest

(e.g., cumulative returns), and constructing forecasts directly. This contrasts sharply with the standard

‘iterated’ approach, where parameters from a baseline model for daily variables are estimated, and then

forecasts are iterated until the horizon of interest is reached. Extensive comparisons between these two

forecasting methodologies have been conducted for linear models, leading to the conclusion that direct

forecasts are more robust to model misspecification than their iterated counterparts (Marcellino et al.,

2006; Pesaran et al., 2011). This robustness arises from the direct minimisation of the in-sample loss

function aligned (in terms of horizon) with the evaluation loss function. However, studies comparing these

approaches theoretically and empirically for non-linear models (such as GARCH) are limited. Existing

studies predominantly favour the iterated approach, whether the focus is on pure volatility forecasting

or forecasting of risk measures (De Nicolò & Lucchetta, 2017; Ghysels et al., 2019; Kole et al., 2017;

Mancini & Trojani, 2011). For a thorough overview of the literature on this topic, we refer the reader

to the work by Ruiz and Nieto (2023).

Our approach integrates elements of the ‘iterated’ and ‘direct’ methods. While we retain the baseline

volatility model for daily data, similar to the ‘iterated’ approach, we also target the evaluation loss

function in the estimation step, similar to the ‘direct’ approach. This alignment of estimation and

evaluation loss functions can enhance forecast accuracy, as indicated by Granger (1969), Granger (1993),

Patton (2020) and Hansen and Dumitrescu (2022). As recommended by Gneiting (2011), once the

evaluation loss is established, a forecaster is free to optimise a potentially misspecified baseline model,

with one strategy being to target this loss during the parameter estimation step.

The work most closely related to ours is perhaps by Oh and Patton (2024), which, like our approach,

does not alter the baseline model but ‘tilts’ its parameters to improve forecasts. The authors motivate this

by arguing that financial institutions build their decision-making process around established statistical

models because adopting newer models may be costly and challenging due to various barriers, at least in

the short term. In contrast to our approach, they propose a non-parametric approach as an alternative

estimation to standard parametric methods (e.g., QML), leveraging information from a state variable

correlated with model misspecification. Their study theoretically explores the potential benefits of this

non-parametric approach, highlighting the standard bias-variance trade-off in forecasting. Ultimately,

our paper and theirs arrive at a similar conclusion: the new estimation method adds variance to forecasts

to reduce the bias associated with a misspecified model.

In addition to our main contribution to improving forecasts, as a second contribution, we propose a

misspecification test comparing our HM estimator and the QML estimator based on a testing framework

similar to that of Hausman (1978). Indeed, both estimators are consistent for the true parameter
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under the null of correct specification yet have distinct asymptotic variances. Under the alternative of

misspecification, the estimators converge in probability to different pseudo-true values, making our test

sensitive to misspecification. To derive a test statistic, we derive the joint asymptotic distribution of

the two estimators. Importantly, the overlapping observations in the estimation loss function used for

our HM estimator introduce autocorrelation in the score contributions. We propose to use two types

of heteroskedasticity-and-autocorrelation-consistent (HAC) variance-covariance estimators to correct for

this: a nonparametric estimator by Newey and West (1987), and a parametric estimator by West (1997),

which exploits an exact order of moving-average structure of the score contributions, and thus, has to

be derived for each baseline model separately.

We perform a Monte Carlo study to analyse the size and power properties of a misspecification test

and evaluate the forecasting performance of our HM and the QML estimators under various scenarios

– both when the model is correctly specified and when it is misspecified. We also analyse the finite-

sample behaviour of the estimator under correct specification in more detail. In this study, we focus

on misspecification related to long memory, a concept initially explored by Mandelbrot and Van Ness

(1968), Granger and Ding (1996), Baillie et al. (1996). As a baseline model correctly specified under

the null hypothesis, we consider a short-memory MEM-GARCH(1,1) model by Engle (2002) and Engle

and Gallo (2006). Under the alternative of misspecification, we consider the LMGARCH(1,d,1) model

developed by Karanasos et al. (2004) as a data-generating process. For power analysis, we consider

values of the memory parameter d between 0 and 0.45, with higher values of d indicating stronger long

memory and greater misspecification of a baseline model. We consider a range of estimation horizons

for our estimator for the entire Monte Carlo study, specifically between 3 and 66 periods.

We show that the test size is reasonably accurate at the 5% significance level, varying in accuracy

depending on the estimation horizon of our estimator. In the power analysis, the misspecification test

achieves the highest asymptotic and size-corrected power at the smallest estimation horizon, with power

increasing with the value of d. Interestingly, this occurs despite the difference between the two estimators

being smallest at this horizon. In the forecasting exercise, we consider forecasting horizons ranging from

5 to 66, allowing the HM estimator to be based on the forecasting horizon, or on a smaller horizon. When

the model is correctly specified, we observe minimal out-of-sample forecasting differences between the two

estimators, with the difference increasing monotonically with the estimation horizon. Conversely, under

misspecification, our estimator yields more accurate out-of-sample forecasts starting from a moderate

degree of misspecification, mainly when the estimation horizon is smaller than the forecasting one. This

finding highlights the practical implications of the bias-variance trade-off.

In our forecasting exercise, we use ten real time series, specifically returns and realised measures

from the paper by Gorgi et al. (2019), to assess the forecasting accuracy across competing GARCH-

type models and parameter estimation methods. The horizons of interest span from weekly (h = 5) to

quarterly (h = 66), with the estimation horizon for the HM estimator allowed to be smaller. In the first

part of our analysis, we conduct stylised exercises using the standard GARCH(1,1) model and the MEM-

GARCH(1,1) model. Our findings indicate that, as the forecasting horizon increases, the gap between the

‘best’ estimation horizon for the HM estimation and the forecasting horizon increases. Additionally, for

the standard GARCH(1,1) model, the ‘best’ estimation horizon is shorter for a given forecasting horizon

than for the MEM-GARCH(1,1). In the second part of our analysis, we investigate how different levels

of model misspecification impact forecasting accuracy across horizons. For this purpose, we introduce

a component GARCH (cGARCH) model developed by Ding and Granger (1996) and Engle and Lee

(1999). We find that the amplitude of gains from the HM estimator is smaller for the cGARCH model

compared to the GARCH(1,1), suggesting that our estimator is more effective for underparameterized
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models, which are more likely to be misspecified.

The rest of the paper is organised as follows. Section 2 introduces the horizon-matched estimator

and examines the bias-variance trade-off in forecasting. Section 3 demonstrates how to construct the

horizon-matched estimator for different volatility models that specify the dynamics of both returns and

realised measures. Section 4 presents a misspecification test and derives the asymptotic joint distribution

for the horizon-matched and the QML estimators. Section 5 conducts a Monte Carlo study to analyse

size and power properties of the test, as well as the forecasting accuracy of the two estimators under

conditions of correct and incorrect model specification. Section 6 shifts focus to the forecasting exercise.

Finally, Section 7 concludes.

2. HORIZON-MATCHED ESTIMATION AND FORECASTING

2.1. Fixing ideas

Let rt denote a daily (single-period) log-return on an asset of interest generated between times t− 1 to

t, i.e., rt = 100 ln (pt/pt−1), where pt is the price at time t. We denote by Ft−1 the information set at

the end of time t− 1 and let it contain the set of past returns {rt−j , j ≥ 1}, and potentially include past

observations of other variables measured at a higher frequency than rt, such as intra-daily returns. We

consider the data-generating process (DGP) for the return series to be of the form

rt =
√
gtzt, gt = g(Ft−1), (1)

where the innovation zt is i.i.d. sequence with E[zt] = 0 and E[z2t ] = 1, and gt ≡ var[rt|Ft−1] is the true

volatility process known at time t − 1. Note that the process above assumes E[rt|Ft−1] = 0, which can

be ensured by demeaning the return series.

We are interested in the conditional volatility prediction of the cumulative (multi-period) return over

some future horizon h. Using the properties of log-returns, we define the cumulative h-day return as

r̃t,h =
∑h−1

j=0 rt+j , which corresponds to a buy-and-hold strategy of buying an asset at time t and selling

it at time t + h − 1. Under the above assumption of zero conditional mean, daily returns exhibit zero

serial correlation. Consequently, the volatility of the cumulative return r̃t,h conditional on Ft−1, denoted

by g̃t,h, is given by

g̃t,h ≡ var[r̃t,h|Ft−1] = E[r̃2t,h|Ft−1] =

h−1∑

j=0

gt+j|t−1, (2)

where gt+j|t−1 ≡ var[rt+j |Ft−1] for j = 0, . . . , h− 1 with gt|t−1 = gt.

2.2. Evaluating volatility forecasts of cumulative returns

To construct volatility forecasts cumulative h-day return, we specify a parametric model for the volatil-

ity process, denoted by σ2
t (θ), where θ represents the model parameter vector. Once the forecast is

constructed, it is evaluated using a loss function pre-specified by the decision-maker (Gneiting, 2011).

In volatility modelling, one of the most common loss functions, in addition to the MSE, is the QLIKE

(Bauwens et al., 2012). Both of these loss functions are ‘consistent’, meaning that their expected val-

ues are minimised at the true conditional volatility of cumulative return. However, unlike the MSE, the

QLIKE loss depends on the ratio of the target variable to the forecast, making it less sensitive to extreme

observations in the sample. Moreover, the QLIKE loss imposes a higher penalty on the under-prediction

of volatility, which is of greater economic importance.
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Given the volatility model σ2
t (θ), the QLIKE loss for the conditional volatility of cumulative return

rt,h is defined as

QLIKE(r̃2t,h, σ̃
2
t,h) = ln σ̃2

t,h(θ) +
r̃2t,h

σ̃2
t,h(θ)

, (3)

where σ̃2
t,h(θ) denotes the conditional volatility of the cumulative return implied from a parametric model,

and r̃2t,h =
∑h−1

j=0 r
2
t+j denotes the sum of squared returns, providing a less noisy measure of the targeted

σ̃2
t,h(θ) compared to the square of the sum of daily returns, (rt + . . . + rt+h−1)

2, which includes the

cross-products between the returns. Given the definition of the loss in (3), the forecasting objective is

then to minimise expected value of this loss - an estimable quantity using out-of-sample data:

min
θ∈Θ

E[QLIKE(r̃2t,h, σ̃
2
t,h(θ))|Ft−1], (4)

where Θ ⊆ Rk, where k denotes the dimension of the parameter vector θ.

Given this forecasting objective, it is natural to estimate the parameter vector θ of a given volatility

model by minimising the in-sample loss defined in (3). In a less-than-ideal forecasting environment, such

as one affected by model misspecification, aligning estimation and evaluation objective functions is one

way of optimising a potentially misspecified model for the forecast objective. It has been shown that this

alignment improves the forecasting performance for a given model, as demonstrated by Granger (1969),

Granger (1993), Patton (2020) and Hansen and Dumitrescu (2022)1. In general, this improvement arises

from favourably tilting the misspecificaiton bias of the parameter estimates to perform best at the horizon

of interest (Patton, 2020).

2.3. Matching estimation and evaluation loss functions

Assume that sample runs from t = 1, . . . , T yielding T observations for estimation. At each time point

t we can construct the conditional variance of the cumulative h-day return conditional on the past

information set Ft−1. The forward nature of the expression for σ̃2
t,h allows to construct only T − h + 1

cumulative h-day returns and their respective conditional variances. An estimator we propose is defined

as

θ̂cT = argmin
θ∈Θ

1

T − h+ 1

T−h+1∑

t=1

QLIKE(r̃2t,h, σ̃
2
t,h(θ)), (5)

where the superscript ‘c’ denotes ‘cumulative’, indicating that the estimation objective is based on

‘cumulative’ variables, such as the cumulative h-day return and its respective conditional volatility. We

refer to θ̂cT as the horizon-matched (HM) estimator.

When the baseline volatility model σ2
t (θ) is correctly specified and point identified, that is there is

the unique point θ0 in the parameter space such that σ2
t (θ0) = gt a.s. ∀ t, it can be shown that

E[sct(θ0)|Ft−1] = 0, sct(θ) = (σ̃2
t,h(θ)− r̃2t,h)

1

σ̃4
t,h(θ)

∂σ̃2
t,h(θ)

∂θ
, (6)

where sct(θ0) denotes the score evaluated at the true parameter vector θ0, and the zero conditional mean

equation holds since E[r̃2t,h|Ft−1] = σ̃2
t,h(θ0) under correct model specification, specifically when first two

conditional moments are correctly specified. Despite the zero conditional mean assumption on the score,

the sequence {sct−1(θ0),Ft−1} is not a martingale difference sequence (mds). This is because sct−1(θ0)

is not Ft−1-measurable: the score depends on returns after time point t − 1, except when h = 1. As a

1Hansen and Dumitrescu (2022) show that in some applications using different loss functions for estimation and eval-

uation may offer advantages, but only if the two loss functions are ‘coherent’ – meaning the parameter probability limits

under them are the same (Def.1, p.538).
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result, sct(θ0) is serially correlated. In Section 4 we show how to account for this time-series dependence

in the score. Since, by the law of iterated expectations (LIE), E[sct(θ0)] = 0, under some regularity

conditions2 θ̂cT converges at a rate
√
T to a well-defined and unique probability limit θc∗, and has a

Normal asymptotic distribution:

θc∗ ≡ argmin
θ∈Θ

E[QLIKE(r̃2t,h, σ̃
2
t,h(θ))]

√
T (θ̂cT − θc∗)

d−→ N
(
0, H−1

c CccH
−1
c

)
,

(7)

where θc∗ is the minimiser of the population objective function, which also serves as the forecast evalu-

ation function.

In contrast to (5), the traditional approach to estimating the parameter vector relies on the estimation

objective function that differs from the forecasting objective of interest. This method assumes that the

innovation zt follows a standard Gaussian cdf, zt
i.i.d.∼ N (0, 1), a condition that can be challenging to

justify in many empirical applications. Under this distributional assumption, the maximum likelihood

estimation is interpreted as a quasi-maximum likelihood (QML) estimation. In this case, the model’s

parameter vector θ is estimated by maximising the Gaussian quasi-likelihood function. This, in turn, is

equivalent to the minimization of the in-sample QLIKE loss function, which leads to the QML estimator

defined as

θ̂dT = argmin
θ∈Θ

1

T

T∑

t=1

QLIKE(r2t , σ
2
t (θ)), QLIKE(r2t , σ

2
t (θ)) = lnσ2

t (θ) +
r2t

σ2
t (θ)

, (8)

where we use the superscript ‘d’ to denote ‘daily’, indicating that the estimation3 objective function is

based on ‘daily’ variables, such as the daily squared return r2t and its respective conditional volatility.

In contrast to the HM estimator, it can be shown that the score sdt (θ) evaluated at the true parameter

vector θ0 is an mds with respect to Ft−1, that is

E[sdt (θ0)|Ft−1] = 0, sdt (θ) = (σ2
t (θ)− r2t )

1

σ4
t (θ)

∂σ2
t (θ)

∂θ
, (9)

and sdt−1(θ0) is Ft−1-measurable. Due to this mds feature, the score sdt (θ0) is not autocorrelated. Hence,

by an application of quasi-likelihood theory under standard regularity conditions the QML estimator θ̂dT

converges at a rate
√
T to a well-defined and unique probability limit θd

∗

θd
∗ ≡ argmin

θ∈Θ
E[QLIKE(r2t , σ

2
t (θ))]

√
T (θ̂dT − θd

∗
)

d−→ N
(
0, H−1

d CddH
−1
d

)
,

(10)

where θd
∗
is the minimiser of the population objective function different from the one of forecasting

interest. By the point-identification assumption, we then know that θc∗ = θd
∗
, which is equal to θ0.

That is, when the model is correctly specified, the HM estimator is also consistent for the true parameter

vector but at the expense of the larger asymptotic variance-covariance matrix induced by overlapping

observations in the estimation objective loss function.

When the baseline volatility model σ2
t (θ) is misspecified, it is possible to obtain the consistency results

if we assume that θc∗ is a unique minimiser of the population objective function E[QLIKE(r̃2t,h, σ̃
2
t,h(θ))],

2We may need to apply the central limit theorem (CLT) for near epoch dependent (NED) sequences.

3Patton (2011) defines the QLIKE loss function as QLIKE(r2t , σ
2
t (θ)) =

r2
t

σ2
t
(θ)

− ln
r2
t

σ2
t
(θ)

− 1, which is the QLIKE loss

function in (8) up to additive and multiplicative constants. Furthermore, the definition of the loss by Patton (2011) is

designed to yield the value of zero when the forecast matches the proxy’s value.
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and that θd
∗
is a unique minimiser of the population objective function E[QLIKE(r2t , σ

2
t (θ))]. In this

case, θc∗ and θc∗ can be interpreted as the pseudo-true parameters. Regarding the statistical inference,

to obtain the asymptotic normality under misspecification we require that there is a CLT that can be

applied to the scores. For instance, a CLT for near epoch dependent (NED) sequences. To summarise,

when the model is misspecified, θc∗ is the pseudo-true parameter of interest because it minimises in

population the objective function that a forecaster uses for model evaluation purposes.

2.4. Forecasting bias-variance trade-off

In the previous subsection we have shown that the HM estimator θ̂cT minimises the forecast evaluation

objective function for the baseline volatility model σ2
t (θ) in large samples, even under misspecification.

Yet, in small samples, or in scenarios where the estimation sample does not increase with the sample

size, the same conclusion for the HM estimator cannot always be drawn due to a bias-variance trade-off.

Using the population parameter definitions in (7) and (10), the unconditional out-of-sample loss eval-

uated at the population parameter θc∗ is weakly smaller than the loss evaluated at any other parameter:

E[L(r̃2T+1,h, σ̃
2
T+1,h(θ

c∗))] ≤ E[L(r̃2T+1,h, σ̃
2
T+1,h(θ))] ∀ θ ∈ Θ. (11)

Evaluating the right-hand side at the QML population parameter θd
∗
, we obtain:

E[L(r̃2T+1,h, σ̃
2
T+1,h(θ

c∗))] ≤ E[L(r̃2T+1,h, σ̃
2
T+1,h(θ

d∗))], (12)

which demonstrates that the out-of-sample average loss evaluated at the HM population parameter is

weakly smaller than that evaluated at the QML population parameter.

Although 12 provides an ordering of the expected out-of-sample loss at the pseudo-true values, we are

typically interested in the ordering of the expected loss at the estimated parameter values. By application

of a second-order Taylor expansion we obtain the following decomposition

E[L(r̃2T+1,h, σ̃
2
T+1,h(θ̂

c
T ))]− E[L(r̃2T+1,h, σ̃

2
T+1,h(θ̂

d
T ))]

≈ E[L(r̃2T+1,h, σ̃
2
T+1,h(θ

c∗))]− E[L(r̃2T+1,h, σ̃
2
T+1,h(θ

d∗))]
︸ ︷︷ ︸

≤0, loss difference at pseudo-true values

+ E

[

∂L(r̃2T+1,h, σ̃
2
T+1,h(θ

c∗))

∂θ
(θ̂cT − θc∗)

]

− E

[

∂L(r̃2T+1,h, σ̃
2
T+1,h(θ

d∗))

∂θ
(θ̂dT − θd

∗
)

]

︸ ︷︷ ︸

bias term

+ E

[

1

2

∂2L(r̃2T+1,h, σ̃
2
T+1,h(θ

c∗))

∂θ2
(θ̂cT − θc∗)2

]

− E

[

1

2

∂2[L(r̃2T+1,h, σ̃
2
T+1,h(θ

d∗))

∂θ2
(θ̂dT − θd

∗
)2

]

︸ ︷︷ ︸

variance term

,

(13)

where, for the sake of brevity, we denote the QLIKE loss by L. Under correct specification, it follows that

the loss difference at the true values and the bias term take value zero, with the latter following by the

conditional mean zero assumption on the scores evaluated at the true values (see Subsection 2.3). Hence,

the difference in expected losses is then driven by the variance of the estimators. Under misspecification,

both the bias and variance terms are expected to be smaller for larger estimation samples, since the

estimators will converge to their pseudo-true values. In particular, for the bias term the magnitude

of the estimation error is Op(1/
√
T ), while for the variance term it is Op(1/T ), indicating that the

estimation error in the variance term is of smaller magnitude than that in the bias term. Hence, in large

samples under misspecification the loss difference is predominantly determined by the loss difference

evaluated at the pseudo-true values.
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The decomposition in (13) shows that under correct specification, when the estimation sample T is

small, the variance term in (13) may become positive due to the inherently larger variance of the HM

estimator, leading to worse expected out-of-sample performance of the horizon-based estimator θ̂cT com-

pared to the QML estimator θ̂dT . However, in the presence of misspecification, the HM estimator, despite

being less biased, where the bias is measured as the distance to the population parameter θc∗ obtained

under the relevant evaluation loss function, still may have larger variance than the QML estimator. If the

reduction in bias is outweighed by the increase in variance, the HM estimator may generate higher ex-

pected loss. Consequently, it is possible that an efficient (low variance) but biased QML estimator could

outperform the less efficient but unbiased HM estimator in terms of forecasting accuracy, particularly in

finite samples.

3. MODEL EXAMPLES

3.1. Standard GARCH models

We demonstrate how the horizon-matched estimation method works for specific models. As an example,

we consider the GARCH(1,1), which is proven hard to beat against a variety of alternatives (see Hansen

and Lunde (2005)). The GARCH(1,1) model for the conditional variance of asset return rt is given by:

rt = σtzt,

σ2
t (θ) = ω + αr2t−1 + βσ2

t−1,
(14)

where θ = (ω, α, β)′. To implement the horizon-matched estimation method, as shown in (5), we need

to find an expression for σ̃2
t,h(θ). Given the model, one can show that the conditional variance of the

cumulative return r̃t,h conditional on Ft−1 is equal to

σ̃2
t,h(θ) =

h−1∑

j=0

σ2
t+j|t−1(θ), (15)

where σ2
t+j|t−1(θ) denotes the conditional variance of a daily return at time point t+ j given information

set Ft−1. It is a well-known expression that the variance of a daily return for the GARCH(1,1) model is

equal to

σ2
t+j|t−1(θ) = σ2 + (α+ β)j(σ2

t|t−1 − σ2), σ2 =
ω

1− α− β
, j = 1, . . . , h− 1, (16)

where σ2
t|t−1 follows in a closed-form from the model.

We now show how to implement our method for a more flexible GARCHmodel, such as the component

GARCH (cGARCH) model introduced by Ding and Granger (1996) and Engle and Lee (1999). The

cGARCH model decomposes the conditional variance into the time-varying long-run (permanent) and

short-run (transitory) components. The cGARCH model is defined as

σ2
t (θ) = qt + st

st = α(r2t−1 − qt−1) + β(σ2
t−1 − qt−1)

qt = ω + ρqt−1 + ϕ(r2t−1 − σ2
t−1),

(17)

where qt denotes the long-run component, st denotes the short-run component, and θ = (ω, α, β, ρ, ϕ)′.

One can rewrite the short-run component in the autoregressive form, st = (α+ β)st−1 +α(r2t−1 − σ2
t−1),

which shows that the sum α+ β determines the persistence rate of st, while ρ does so for qt. In parallel
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to the GARCH(1,1) model, we derive an analytical expression for σ2
t+j|t−1(θ) which now consists of the

two components:

σ2
t+j|t−1(θ) = qt+j|t−1 + st+j|t−1

st+j|t−1 = (α+ β)jst|t−1,

qt+j|t−1 = q + ρj(qt|t−1 − q), q =
ω

1− ρ
, j = 1, . . . , h− 1.

(18)

3.2. GARCH models augmented with high-frequency information

We demonstrate the versatility of the proposed horizon-matched estimation approach by extending its

application to GARCH models with realised measures. As an example, we focus on ‘parallel GARCH’

models, including the MEM model by Engle (2002) and Engle and Gallo (2006), and the HEAVY model

by Shephard and Sheppard (2010). These models are classified as ‘parallel GARCH’ because their

primary goal is to infer the conditional variance of returns with the help of improved measurements,

such as realised measures. Also, included in this category are models with the measurement equation

for the realised measure, such as the Realized GARCH model by Hansen et al. (2012).

We begin with the MEM model. For simplicity, we assume that σ2
t has a conditionally unbiased esti-

mator, denoted by xt, which represents the realised measure. By conditional unbiasedness we mean that

E[xt|Ft−1] = σ2
t . The MEM model for the realised measure with the standard GARCH(1,1) specification

for σ2
t is defined as

xt = σ2
t ut, ut

i.i.d.∼ D+(1, σ2)

σ2
t (θ) = ω + αxt−1 + βσ2

t−1,
(19)

where Ft = σ{xs : s ≤ t} and ut is an iid component with non-negative support and unit mean

assumption, E[ut|Ft−1] = 1, such that σ2
t is identified as the conditional mean of the realised measure.

A possible distribution for ut is a Gamma distribution Γ(a, b) with a shape parameter a and a scale

parameter b, where the unit mean assumption imposes a restriction on the scale, that is b = 1/a.

Estimating the parameters of the MEM model is aligned with optimization of the QLIKE function.

Assuming that a = 1, which corresponds to the exponential distribution, the log-likelihood function

(not quasi), after omitting constants and rescaling, is given by (8), where r2t is substituted with the

realised measure xt as a proxy for the conditional variance. As shown by Engle and Gallo (2006), exactly

the same estimation objective can be used for other types of Gamma distribution with a 6= 1, and the

estimator obtained from this objective’s minimisation can be interpreted as the QML.

To implement the horizon-matched estimator, we define σ̃2
t,h(θ) as

σ̃2
t,h(θ) = E[x̃t,h|Ft−1] =

h−1∑

j=0

E [xt+j |Ft−1] . (20)

While E[xt|Ft−1] = σ2
t|t−1 follows from the model, to find expressions for E[xt+j |Ft−1] for t ≥ 1 we apply

the LIE:

E[xt+j |Ft−1] = E[E[xt+j |Ft+j−1]|Ft−1] = E[σ2
t+j |Ft−1], for j = 1, . . . , h− 1, (21)

which, combined with the given model’s specification, implies that

E[xt+j |Ft−1] = ω + αE[xt+j−1|Ft−1] + βE[σ2
t+j−1|Ft−1], (22)

yielding the recursive relation

E[xt+j |Ft−1] = ω + (α+ β)E[xt+j−1|Ft−1]. (23)
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Finally, we use the backward substitution in (23) to express it via the σ2
t|t−1 and the long-run uncon-

ditional mean σ2 = ω/(1 − α − β), assuming that the process for σ2
t is covariance-stationary, leading

to

E[xt+j |Ft−1] = σ2 + (α+ β)j(σ2
t|t−1 − σ2), for j = 1, . . . , h− 1, (24)

which is a parallel expression to (16) for a standard GARCH(1,1) model. This shows that for the class of

MEM models, the expression for σ̃2
t,h resembles that of the standard GARCH. Hence, if we now specify

the MEM model with the cGARCH structure for volatility, the resulting expression for σ̃2
t,h will again

mirror that in (18).

As another example of a ‘parallel GARCH’ model, we consider the HEAVY model:

µt(θ
RM ) = ωRM + αRMRMt−1 + βRMµt−1, µt = E[RMt|Ft−1]

σ2
t (θ

R) = ωR + αRRMt−1 + βRσ2
t−1, σ2

t = var[rt|Ft−1]

(25)

(26)

where Ft−1 combines information from both daily returns and realised measures, and θR = (ωR, αR, βR)′

and θRM = (ωRM , αRM , βRM )′. We note that (26) is identical to the dynamic equation of the MEM

model with GARCH(1,1) structure. However, in contrast to the MEM model, Shephard and Sheppard

(2010) assume that (26) models close-to-close conditional variance, while (25) models conditional expec-

tation of open-to-close variance, which implies that the realised measure is likely to be a downward biased

measure (due to overnight effects) of the squared return, that is E[RMt|Ft−1] ≤ var[rt|Ft−1]. Since the

return equation in (26) contains the exogenous variable (realised measure), which is not an unbiased es-

timator for the conditional variance of interest, the specification of the dynamics for the realised measure

is necessary to produce multi-day ahead conditional variance forecasts, and thus construct the variance

of interest σ̃2
t,h. Expression for σ2

t+j|t−1 and µt+j|t−1 are shown in eq.(11) in Shephard and Sheppard

(2010).

It is important to note that one can also apply the horizon-matched estimation approach to a pure

time-series model for the realised measure, such as the popular HAR model by Corsi (2009). However, in

this case, to infer the variance of returns, an assumption about the realised measure is required. Typically,

the assumption is that the realised measure is an unbiased estimator of the conditional variance – similar

to what is done in the MEM model. Alternatively, as seen in the HEAVY model, if the realised measure

is not unbiased, the dynamics of its conditional mean should be incorporated.

4. MODEL MISSPECIFICATION TEST

4.1. Theoretical framework

In this section we derive the misspecification test that is based on a similar null hypothesis as the Hausman

test (Hausman, 1978). Under the null hypothesis of correct specification, the estimators θ̂cT and θ̂dT are

both consistent estimators for the true value θ0, but have distinct asymptotic distributions. Under

the alternative hypothesis of misspecification, each estimator will converge in probability to different

psuedo-true values.

Formally, Hausman (1978) considers the following testing situation:

H0 : plim(θ̂dT − θ̂cT ) = 0

H1 : plim(θ̂dT − θ̂cT ) 6= 0.
(27)

The Hausman test statistic is then simply a quadratic form around the contrast between the two esti-

mators and is given by

ĤT = T (θ̂dT − θ̂cT )
′Ω̂−

T (θ̂
d
T − θ̂cT ), (28)
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where Ω := Avar(
√
T (θ̂dT−θ̂cT )) and Ω̂−

T is a consistent estimator of some generalised inverse of Ω, denoted

by Ω−. Assuming Ω̂−
T

p−→ Ω−, under H0

ĤT
d−→ χ2

rk(Ω), (29)

where for a given square matrix A, rk(A) denotes its rank. UnderH1, the test statistic diverges, ĤT
p−→ ∞.

These two conditions guarantee that the misspecification test has the asymptotic size control under the

null, and is consistent under the alternative.

The question is how to construct Ω̂−
T to ensure that the test statistic converges in distribution. When

Ω is full rank, then by the application of the Continuous Mapping Theorem a valid choice of Ω̂−
T is

given by the inverse of Ω̂T assuming that Ω̂T
p−→ Ω. If the covariance matrix is rank deficient, then

the Moore-Penrose inverse of Ω̂T , denoted as Ω̂+
T , converges to the Moore-Penrose inverse of Ω, that is

Ω̂+
T

p−→ Ω+, iff Ω̂T has rank converging in probability to the one of Ω, see Theorem 2 of Andrews (1987).

In our application, we do not face the problem of reduced rank, and thus use the standard inverse to

construct the test statistic.

4.2. Asymptotic joint distribution

The estimators θ̂dT and θ̂cT are obtained by the first-order conditions, respectively:

T∑

t=1

sdt (θ̂
d
T ) = 0 and

T−h+1∑

t=1

sct(θ̂
c
T ) = 0, (30)

where sdt (θ̂
d
T ) and sct(θ̂

c
T ) are the scores evaluated at the estimators. To obtain the joint asymptotic

distribution of the two estimators under correct specification, we firstly define sct(θ̂
c
T ) = 0 for t =

T − h + 2, . . . , T , which are the missing observations. Then, we expand the stacked score vectors from

(30) in a Taylor series around the true parameter θ0. Under several conditions, it can be shown that

√
T

(

θ̂dT − θ0

θ̂cT − θ0

)

= −
[

1
T

∑T
t=1

∂sd
t
(θ0)

∂θ′
0k×k

0k×k
1
T

∑T
t=1

∂sc
t
(θ0)

∂θ′

]−1

1√
T

T∑

t=1

(

sdt (θ0)

sct(θ0)

)

+ op(1), (31)

from where the asymptotic joint distribution is found.

As shown in Subsection 2.3, the scores evaluated at the true parameter value are such that E[sdt (θ0)] =

E[sct(θ0)] = 0. With that result, it can be shown that the stacked scores evaluated at θ0 obey the central

limit theorem (CLT):

1√
T

T∑

t=1

(

sdt (θ0)

sct(θ0)

)

d−→ N
(

02k×1, C
)

, C =

[

Cdd Cdc

Ccd Ccc

]

, (32)

where

C = lim
T→∞

E





(

1√
T

T∑

t=1

(

sdt (θ0)

sct(θ0)

))(

1√
T

T∑

t=1

(

sdt (θ0)

sct(θ0)

))′


 (33)

12



with

Cdd = lim
T→∞

1

T

T∑

t=1

E[sdt (θ0)s
d
t (θ0)

′]

Cdc = lim
T→∞

1

T

T∑

t=1

E
[
sdt (θ0)s

c
t(θ0)

′
]
+

1

T

h−1∑

j=1

T∑

t=j+1

E[sdt (θ0)s
c
t−j(θ0)

′]

Ccc = lim
T→∞

1

T

T∑

t=1

E[sct(θ0)s
c
t(θ0)

′]

+
1

T

h−1∑

j=1

T∑

t=j+1

E[sct(θ0)s
c
t−j(θ0)

′] +
1

T

−h+1∑

j=−1

T∑

t=−j+1

E[sct+j(θ0)s
c
t(θ0)

′]

Ccd = Cdc
′,

(34)

where the limiting variance of the ‘daily’ score, Cdd, accounts only for the outer-product because

{sdt (θ0),Ft} forms a martingale difference sequence. The ‘cumulative’ score, on the contrary, forms

a moving average process of order h − 1, and thus we have to account for non-zero autocovariances:

E[sct(θ0)s
c
t−j(θ0)

′] 6= 0 for j = −h+ 1, . . . , 0, . . . , h− 1.

Together with (32), by the application of the Continuous Mapping Theorem and Slutsky’s Lemma

(31) leads to the joint asymptotic distribution of the two estimators:

√
T

(

θ̂dT − θ0

θ̂cT − θ0

)

d−→ N
(
0, H−1CH−1

)
,

H =

[

Hd 0k×k

0k×k Hc

]

=




lim

T→∞

1
T

∑T
t=1 E

[
∂sd

t
(θ0)

∂θ′

]

0k×k

0k×k lim
T→∞

1
T

∑T
t=1 E

[
∂sc

t
(θ0)

∂θ′

]



 .

(35)

4.3. Variance-covariance matrix estimator

The estimator for the asymptotic variance-covariance matrix of θ̂T = (θ̂d′T , θ̂
c′
T )

′ is given by

Âvar(θ̂T ) =
1

T
Ĥ−1ĈĤ−1 =

1

T

[

Ĥ−1
d ĈddĤ

−1
d Ĥ−1

d ĈdcĤ
−1
c

Ĥ−1
c ĈcdĤ

−1
d Ĥ−1

c ĈccĤ
−1
c

]

, (36)

with the estimator for the Hessian defined as

Ĥ =

[

Ĥd 0k×k

0k×k Ĥc

]

, Ĥd =
1

T

T∑

t=1

[

∂sdt (θ̂
d
T )

∂θ′

]

, Ĥc =
1

T

T∑

t=1

[

∂sct(θ̂
c
T )

∂θ′

]

, (37)

where Ĥd and Ĥc are the sample counterparts of Hd and Hc from (35), respectively. As for the estimator

for C, we propose to use two heteroskedasticity-and-autocorrelation-consistent (HAC)-type estimators,

which we discuss below. To obtain the test statistic, from Âvar(θ̂T ) we obtain the estimator for the

asymptotic variance-covariance matrix of the contrast:

Σ̂T := Âvar(θ̂dT − θ̂cT ) = SÂvar(θ̂T )S
′

=
1

T
[Ĥ−1

d ĈddĤ
−1
d + Ĥ−1

c ĈccĤ
−1
c − Ĥ−1

d ĈdcĤ
−1
c − Ĥ−1

c ĈcdĤ
−1
d ],

(38)

where S = (Ik,−Ik) is a differencing matrix and Ik is the identity matrix of dimension k. Finally, the

test statistic is constructed as

ĤT = (θ̂dT − θ̂cT )
′Σ̂−

T (θ̂
d
T − θ̂cT ), (39)

where Σ̂−
T is the inverse of Σ̂T . Below we show how to obtain the estimator for C.

13



4.3.1. Newey-West estimator

We firstly introduce a non-parametric estimator proposed by Newey and West (1987). Let st(θ̂T ) =
(

sdt (θ̂
d
T )

′, sct(θ̂
c
T )

′
)′

for t = 1, . . . , T . Then, the estimator for C is defined as

Ĉ =

l−1∑

j=−l+1

ωjΓ̂j , Γ̂j =
1

T

T∑

t=j+1

st(θ̂T )st−j(θ̂T )
′, j = 0, . . . , l − 1, (40)

with Γ̂j = Γ̂′
−j for j = −l+1, . . . ,−1. In terms of the autocovariance matrices Γ̂j for j = 1, . . . , l− 1, Ĉ

in (40) can be written as

Ĉ = Γ̂0 +
l−1∑

j=1

ωj(Γ̂j + Γ̂′
j). (41)

The weights ωj can be taken from any symmetric around 0 kernel function with the normalisation ω0 = 1.

We opt for the Bartlett kernel proposed by Newey and West (1987). In this case, the weights are tent-

shaped weights and defined as ωj = 1 − j/l for j = 1, . . . , l − 1. As we can see, the weights decrease

linearly with the step size of 1/l, hence, we may inflate the lag structure by picking the lag length l larger

than h to reduce the bias in the estimator. Overall, the downside of using this estimator is that, first,

the choice of l is determined empirically; and second, we inevitably account for autocovariances up to

lag l − 1 of the ‘daily’ score sdt (θ̂
d
T ), which should be zero in theory at the true value.

4.3.2. West estimator

The second estimator we consider is a parametric estimator proposed by West (1997), which exploits the

known structure of the dependence in the score vectors. Consider the ‘cumulative’ score, which can be

decomposed into components, one of which is drives the dependence in the score:

sct(θ) = (r̃2t,h − σ̃2
t,h)

1

σ̃4
t,h

∂σ̃2
t,h

∂θ
= ztut,

with zt =
1

σ̃4
t,h

∂σ̃2
t,h

∂θ
and ut = r̃2t,h − σ̃2

t,h.

(42)

Given that ut is covariance stationary (due to the covariance-stationarity of σ2
t ), and moreover, satisfies

E[utut+j ] = 0 for j ≥ h, it follows that ut can be represented as an MA(h− 1) process:

ut = εt + ψ1εt−1 + . . .+ ψh−1εt−h+1, (43)

where εt is white noise, but conditionally heteroscedastic like ut.

West (1997) shows that Ccc can be expressed as

Ccc =

h−1∑

j=−h+1

E[sct(θ)s
c′
t+j(θ)] = E[dtd

′
t], dt = εt

h−1∑

j=0

ψjzt+j , (44)

with εt = r2t+h−1 − σ2
t+h−1 (see Appendix A5 for details). Moreover, we show that for the GARCH(1,1)

model the coefficients ψj in (44) can be expressed in terms of the model’s parameters:

ψ0 = 1, ψj = 1 + α
1− (α+ β)j

1− α− β
, j = 1, . . . , h− 1. (45)

Note that expressing the coefficients ψj in terms of the model parameters can become more challenging

for more complex models.
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Consider now the ‘daily’ score sdt (θ). Using the definition of εt from above, the score can be decom-

posed into

sdt (θ) = (r2t − σ2
t )

1

σ4
t

∂σ2
t

∂θ
= εt−h+1xt, with xt =

1

σ4
t

∂σ2
t

∂θ
. (46)

Using this decomposition, Cdd can be expressed as

Cdd = E[ε2txt+h−1x
′
t+h−1]. (47)

As shown in Appendix A5, Ccd can be then expressed as

Ccd =
h−1∑

j=0

E[scts
d′
t+j ] = E



ε2t





h−1∑

j=0

ψjzt+j



x′t+h−1



 , (48)

where by defining z∗t+h−1 =
∑h−1

j=0 ψjzt+j , we obtain

C =

[

Cdd Cdc

Ccd Ccc

]

= E



ε2t

(

xt+h−1

z∗t+h−1

)(

xt+h−1

z∗t+h−1

)′


 . (49)

The natural estimator for C is its sample counterpart:

ĈT =
1

T

T∑

t=1

(r2t − σ̂2
t )

2

(

x̂t

ẑ∗t

)(

x̂t

ẑ∗t

)′

, (50)

which shows that by construction the estimator is guaranteed to be positive (semi-)definite because it

involves the summation over outer-products.

Overall, we acknowledge that West (1997) may be impractical due to its analytical complexities,

which may arise for more complex models rather than the GARCH(1,1). That is, the estimator has

to be derived for each model separately and depends on the model’s structure. Alternatively, a more

practical option is the estimator by Newey and West (1987).

5. MONTE CARLO STUDY

The type of misspecification takes many forms and is dependent on the true DGP and the model under

consideration (e.g., see White (1996)). In this section, we focus on dynamic misspecification, referring

to the incorrect specification of the dynamics in conditional volatility. As an example, we consider

misspecification with respect to long memory, a well-documented empirical characteristic of volatility

(Baillie et al., 1996; Granger, 1969). We consider a short-memory MEM-GARCH(1,1) model both when

it is correctly specified and when it is misspecified. First, we present the size results of a test together with

the Monte Carlo properties of both the QML and the HM estimators. Second, we illustrate the power

of the test in detecting a specific form of misspecification with respect to long memory. Additionally,

we assess the forecasting performance of the QML and the HM estimators when the MEM-GARCH(1,1)

model is both correctly specified and misspecified.

5.1. Size properties of a misspecification test

To assess the size properties of a misspecification test, we consider as a data generating process (DGP)

under the null hypothesis of correct specification the LMGARCH(1,d,1) model developed by Karanasos

et al. (2004) with the restriction d = 0. Under this restriction, the original long-memory model simplifies
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to the short-memory GARCH(1,1) model. The LMGARCH(1,d,1) for the realised measure xt is defined

as

xt = σ2
t ut, ut

i.i.d∼ Γ(a, 1/a)

(1− φL)(1− L)d(xt − σ2) = (1− βL)(xt − σ2
t ),

(51)

where E[xt+1] = σ2 and (1−L)d is a fractional difference operator with a memory parameter d. Unlike the

well-known FIGARCH(1,d,1) model by Baillie et al. (1996), the LMGARCH(1,d,1) is specified in terms

of deviations from the unconditional mean. This minor modification aligns it with the ARFIMA(1,d,1)

model for the mean, and, consequently, ensures covariance stationarity for the series modelled.

We simulate the realised measure series through the ARCH(∞) representation for σ2
t :

σ2
t+1 = σ2 +Ψ(L)(xt+1 − σ2), Ψ(L) =

∞∑

i=1

ψiL
i, Ψ(L) = 1− (1− L)d(1− φL)

(1− βL)
, (52)

with d = 0, β = 0.6, φ = 0.95, implying essentially a short-memory MEM-GARCH(1,1) model with

β = 0.6 and α = φ−β = 0.35. Shape parameter a in gamma distribution is set to a = 2 and σ2 = 2. All

parameter values for the simulated series are consistent with the parameter estimates obtained from the

model estimated on real dataset. We simulate N = 1000 series of length 5×T , discarding the initial 4×T
observations as a burn-in period to avoid a long lasting effect of the initialisation, which is particularly

useful in cases when d 6= 0 simulated in the next subsection for power analysis. This disregard of data

results in a final length of T = 5000 observations.

Figure 1. Pdf-Normalised Histograms of Estimated Parameters for the HM Estimator.

Notes: Histograms with the pdf normalisation of estimated parameters for the MEM-GARCH(1,1). Each figure corresponds

to a different parameter, with three histograms per figure representing different estimation horizons he in the HM estimator:

he ∈ {5, 22, 66}. True parameter values are equal to ω0 = 0.1, α0 = 0.35, β0 = 0.6.

Figure 1 illustrates the sampling distributions of the HM estimator for three estimation horizons:

he = 5 (small), he = 22 (medium) and he = 66 (large). We choose these estimation horizons to highlight

the differences in sampling distributions when the horizon varies from small to large. As expected under

correct specification, the sampling distributions are centered around the true parameter value for each

horizon, with slight biases arising for larger estimation horizons. However, these finite sample biases are

expected to vanish as the sample size increases. For smaller estimation horizons, such as he = 5, the

sampling distributions are narrower with a sharper peak at the true parameter value, indicating smaller

variance, that is more precise estimates. In contrast, for larger estimation horizons, such as he = 66, the

sampling distribution is flatter around the true parameter value, indicating higher variance, that is less

accurate estimates.

In Figure 2, we analyse in more detail the variance of the sampling distribution for the QML and

HM estimators. The goal is to assess in finite samples the quality of the asymptotic approximation for
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the variance of the estimators. For the HM estimator, we consider estimation horizons beyond those

shown in Figure 1. To address our goal, we compare the root mean square error of parameter estimates

with the corresponding asymptotic standard error, which is independently computed using the West

(1997) variance estimator for a MEM-GARCH(1,1) model as discussed in Section 4. Figure 2 reveals

two key findings. First, the variance of the HM estimator is consistently higher than that of the QML

estimator and increases with the estimation horizon. Second, as the estimation horizon increases, the

asymptotic standard error tends to be systematically higher than the root mean square error, indicating

a decline in the accuracy of finite sample approximations due to the true variance of the estimator being

overestimated by the West (1997) estimator.

Figure 2. Asymptotic SE and RMSE for the QML and HM Estimators.

Notes: Figures compare asymptotic standard error (Asymptotic SE) and root mean square error (RMSE) for the QML

and HM estimation methods. Each figure represents a separate parameter in the MEM-GARCH(1,1) model. The horizontal

axis corresponds to the estimation horizon he. In particular, for the QML estimator he = 1, while for the HM estimator we

consider he ∈ {3, 5, 8, 10, 14, 18, 22, 28, 32, 38, 44, 52, 60, 66}. For the purpose of illustration, we consider definitions of the

RMSE and Asymptotic SE for ω: RMSE is
[

1
N

∑N
i=1(ω̂

(i)
T − ωT )2

]1/2
, where ωT is Monte Carlo empirical mean across

N = 1000 simulations, and Asymptotic SE is 1
N

∑N
i=1

[

1
√

T

[

Avar
(√

T (ω̂
(i)
T − ω0)

)]1/2
]

, where ω0 is the true parameter

value.

Having discussed the Monte Carlo behaviour of the estimators, we present the empirical size results for

the misspecification test in Figure 3. In general, the test is reasonably accurate in correctly not rejecting

the null hypothesis of correct specification. In particular, the empirical sizes demonstrate a slight wave

pattern as the estimation horizon increases. At the 1% significance level, the rejection frequency tends

to increase with the estimation horizon, while at the 10% significance level, tends to decrease making the

test more conservative. In contrast, the more accurate size results are observed at the 5% significance

level.

Table 1 presents the out-of-sample mean QLIKE loss difference across Monte Carlo simulations when

the MEM-GARCH(1,1) model is correctly specified. For each simulation, we use first T = 2500 ob-

servations to estimate parameters, followed by the rolling window forecasting for the horizons h ∈
{5, 10, 22, 44, 66}, with a re-estimation window of 50 observations (approximately two months). We es-

timate parameters using both the QML and HM estimation methods, where for the latter we allow the

estimation horizon to be smaller than the forecasting horizon. As shown in the Table, the mean losses

are quite comparable across different forecasting horizons, which is in line with the null hypothesis of

correct specification that both estimators are consistent for the true value. However, as the estimation

horizon for the HM estimator increases, the mean difference also increases, with a negative sign indicating

worse performance for the HM estimator. Indeed, according to the decomposition in (13), for a correctly

specified model only the variance term affects the mean difference in out-of-sample losses. Since the
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estimation sample size is fixed and relatively large in this controlled forecasting exercise, the impact of

the variance term on differences in mean QLIKE loss is small but increases with the estimation horizon.

Figure 3. Empirical Size of a Misspecification Test.

Notes: Rejection frequencies of the null hypothesis of correct specification for a misspecification test. The model

under the null is the MEM-GARCH(1,1) model. The model used in the estimation is the MEM-GARCH(1,1) as

well. Size results are shown for different estimation horizons he ∈ {3, 5, 8, 10, 14, 18, 22, 28, 32, 38, 44, 52, 60, 66}

(horizontal axis) used to compute the HM estimator, and for significance levels {0.1, 0.05, 0.01}. Results are based

on the West (1997) variance-covariance estimator.

Table 1. Forecasting Results for a Correctly Specified Model.

he = 3 he = 5 he = 8 he = 10 he = 14 he = 18 he = 22 he = 28 he = 32 he = 38 he = 44 he = 52 he = 60 he = 66

h = 5 -0.0001 -0.0001

h = 10 -0.0001 -0.0002 -0.0003 -0.0004

h = 22 -0.0001 -0.0002 -0.0005 -0.0006 -0.0009 -0.0012 -0.0016

h = 44 -0.0001 -0.0003 -0.0006 -0.0008 -0.0011 -0.0014 -0.0018 -0.0022 -0.0027 -0.0031 -0.0037

h = 66 -0.0002 -0.0003 -0.0008 -0.0009 -0.0012 -0.0015 -0.0018 -0.0022 -0.0025 -0.0028 -0.0032 -0.0038 -0.0042 -0.0044

Notes: Out-of-sample mean QLIKE loss difference across Monte Carlo simulations for the correctly specified MEM-

GARCH(1,1) model, considering forecasting horizons h ∈ {5, 10, 22, 44, 66}. Mean loss is constructed as the loss from

the QML estimator minus the loss from the HM estimator. The estimation horizon for the HM estimator corresponds to

he ∈ {3, 5, 8, 10, 14, 18, 22, 28, 32, 38, 44, 52, 60, 66}. For a given forecasting horizon, the estimation horizon considered is

he ≤ h.

5.2. Power properties of a misspecification test

For the power analysis, we consider nine realistic DGPs by varying the ‘degree of memory’ under the

alternative hypothesis of misspecification. The parameter values for these DGPs are obtained by fitting

the realised measure for the IBM individual stock to the Gaussian FIGARCH in the parameterisation

of Chung (1999)4. Estimation is done in OxMetrics using the G@RCH package5. We fix the memory

parameter d at various levels, d ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45}, and estimate the remaining

parameters. This produces a grid of values β ∈ {0.65, 0.69, 0.73, 0.77, 0.8, 0.84, 0.87, 0.89, 0.92} and φ =

0.956. As for the Gamma distribution shape parameter a, it is not obtained directly due to the Gaussian

4Both Chung (1999) and Karanasos et al. (2004) apply the fractional differencing operator to the demeaned process, as

was originally suggested in the ARFIMA model for the mean process.
5Package link: https://sites.google.com/iae-aix.com/slaurent/grch?authuser=0.
6We smoothed and adjusted estimated parameters to ensure that the realised measure is non-negative for all simulations.

However, not all alternative DGPs satisfy necessary and sufficient conditions from Conrad and Haag, 2006 to guarantee

non-negative conditional variance and, consequently, realised measure.
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errors in the estimated model. Instead, we compute the variance of the standardised error, xt/σ
2
t , which

is approximately 0.5 for all the DGPs, corresponding to a = 2 in Γ(a, 1/a). Therefore, a is fixed at

this level for all DGPs. Interestingly, while most estimated parameters show modest variation with d,

parameter β, on the contrary, increases monotonically. The length of the simulated series and the number

of simulations are the same as those in the size analysis (N = 1000, T = 5000).

Figure 4 illustrates mean sample autocorrelations for realised measure series across ten different DGPs

(including the one for the size). First, the first-order autocorrelation structure appears to be similar across

simulated DGPs. Discrepancies become more pronounced at larger lags, with the highest autocorrelation

values across lags characterising the DGP with d = 0.45. This illustrates that the autocorrelation function

of order j, denoted by ρj , for the LMGARCH model follows ρj ∼ j2d−1, implying that the autoregressive

parameter β primarily influences only first-order autocorrelations. Second, the simulated DGP with

d = 0.45 closely resembles real data (in particular, up to 100 lags) which we take to be the realised

kernel for IBM stock. This is not surprising given that the parameter values used to generate data under

this DGP correspond to parameter estimates obtained from modeling IBM stock using the LMGARCH

model. Third, the figure indicates that the MEM-GARCH(1,1) model corresponding to the DGP with

d = 0 might be too restrictive for the realised measure series because its autocorrelation function decays

too quickly to zero, indicating that the MEM-GARCH(1,1) model is dynamically misspecified.

Figure 4. Mean Autocorrelation Functions of Simulated Data for Power Analysis.
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Notes: Mean autocorrelation functions across Monte Carlo simulations for simulated realised measures are plotted

for the DGP with d = 0 (size analysis) and nine alternative DGPs with d 6= 0 (power analysis). In addition, the

autocorrelation function for the realised measure of IBM stock is included.

Figure 5 reveals that the power of the misspecification test rises with an increase in the memory

parameter d, demonstrating consistency of the test. As d increases, indicating larger deviations from

the null hypothesis of correct specification (d = 0), so does the power of the test across all values of

the estimation horizon he in the HM estimator. Interestingly, the highest power is observed for he = 3,

while the lowest power is observed for he = 66. We explain this observation as follows: although a

smaller difference between θ̂dT and θ̂cT is expected for smaller values of he compared to larger values of he

for a given d, elements of the variance-covariance matrix estimate may be smaller for smaller values of

he, thereby amplifying the test statistic, and thus the power. Table 2 indeed shows that the Euclidean

distance between the two estimators increases both with an increment in d for a fixed value of he and

with an increment in he for a fixed value of d.
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Figure 5. Empirical Power of Misspecification Test.
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Notes: Rejection frequencies of the null hypothesis of correct specification for a misspecification test at 5% sig-

nificance level. Results are shown for ten DGPs from the LMGARCH(1,d,1) model for different values of d ∈
{0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45}, shown in the horizontal axis, and for different values of estimation horizons

(he) for the HM estimator. Considered estimation horizons are he ∈ {3, 5, 8, 10, 14, 18, 22, 28, 32, 38, 44, 52, 60, 66}. The

model used in the estimation is the MEM-GARCH(1,1). Hence, results corresponding to d = 0 are the size results. Results

are based on the West (1997) estimator for the variance-covariance matrix of the scaled scores. Left plot corresponds to

the actual power as a function of d calculated using asymptotic critical values of the chi-squared distribution. Right plot

corresponds to the actual power as a function of d calculated using size-corrected critical values. Size-corrected critical

values are computed as the 100× (1− 0.05) percentile of the Monte Carlo distribution of the Hausman test statistic under

the null hypothesis of correct specification.

Table 2. Mean Euclidean Distance between the QML and the HM estimators.

he = 3 he = 5 he = 8 he = 10 he = 14 he = 18 he = 22 he = 28 he = 32 he = 38 he = 44 he = 52 he = 60 he = 66

d = 0 0.01 0.02 0.02 0.03 0.04 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.10 0.11

d = 0.05 0.01 0.02 0.03 0.03 0.04 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.11

d = 0.1 0.02 0.02 0.03 0.03 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12

d = 0.15 0.02 0.03 0.04 0.04 0.05 0.06 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13

d = 0.2 0.04 0.05 0.06 0.06 0.07 0.07 0.08 0.09 0.09 0.10 0.11 0.12 0.13 0.14

d = 0.25 0.05 0.07 0.08 0.09 0.10 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.18 0.19

d = 0.3 0.07 0.10 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23

d = 0.35 0.10 0.13 0.16 0.18 0.19 0.20 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29

d = 0.4 0.12 0.17 0.21 0.23 0.25 0.26 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35

d = 0.45 0.16 0.23 0.29 0.31 0.34 0.36 0.38 0.40 0.41 0.42 0.43 0.44 0.45 0.46

Notes: Mean Euclidean distance between the QML and the HM estimator for the MEM-GARCH(1,1)

model. Results are shown for ten DGPs from the LMGARCH(1,d,1) model for different values of d ∈

{0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45} and for different values of estimation horizon (he) for the HM esti-

mator. Considered estimation horizons are he ∈ {3, 5, 8, 10, 14, 18, 22, 28, 32, 38, 44, 52, 60, 66}.

To better understand the difference between the two estimators, Figure (6) plots the mean parameter

estimates across Monte Carlo simulations, along with the volatility persistence estimate, measured by

the sum of α and β. An interesting observation is that as d increases, the HM estimates of both α

and β diverge from the QML ones. In particular, the larger the estimation horizon, the greater the

divergence. Specifically, for the HM estimator, the mean estimate of α decreases as d increases, while

β rises, which is consistent with α + β being bounded by one. In contrast, for the QML estimator, β

decreases (non-monotonically), while α increases. Looking at volatility persistence captured by α + β,

the HM estimator consistently shows higher persistence than the QML estimator, though, as expected,

the magnitude of the difference is relatively small. For the largest degree of misspecification, the highest
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persistence is observed for the HM estimator with the largest estimation horizon.

Figure 6. Mean Parameter Estimates based on the QML and HM Estimators.
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Notes: Mean parameter estimates from the QML and HM estimation methods for the MEM-GARCH(1,1) model. Thirst

three plots show mean results for separate parameters, while the fourth plot shows mean estimate of volatility per-

sistence (α + β). Mean estimates are shown for ten DGPs from the LMGARCH(1,d,1) model for different values of

d ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45}, shown in the horizontal axis, and for different values of estimation hori-

zons for the HB estimator he = {5, 22, 66}. Estimation horizon he = 1 corresponds to the QML estimator.

Having analysed the power of the test, we aim to recover forecasts under different degrees of mis-

specifications to evaluate the effectiveness of the HM estimator for forecasting. Table 3 presents the

out-of-sample mean QLIKE loss difference across Monte Carlo simulation when the MEM-GARCH(1,1)

model is misspecified. Similar to the forecasting exercise when the model was correctly specified, we use

first T = 2500 observations to estimate model parameters, followed by the rolling window forecasting for

horisons h ∈ {5, 10, 22, 44, 66}, with a re-estimation window of 50 observations. We estimate parameters

using both the QML and HM estimation methods, where for the latter we allow the estimation horizon

to be smaller than the forecasting horizon. There are a couple of key takeaways from this Table. First,

when the misspecification degree is small (e.g., d = 0.05, d = 0.1), the mean loss difference is negative for

most forecasting horizons, indicating that the QML estimator outperforms the HM estimator, except for

h = 44 with he = 3. This occurs because, for small degree of misspecification, the pseudo-true values are

close, resulting in small loss differences evaluated at the pseudo-true values (see (13)). However, the bias

and variance terms increase with the estimation horizon, eventually dominating the out-of-sample mean

loss difference. Second, as the degree of misspecification grows (larger d), the mean loss difference turns

positive, indicating the superior performance of the HM estimator. More importantly, as h increases, it

becomes less optimal to match the estimation and forecasting horizons. In particular, for the smallest

forecasting horizon (h = 5), it is optimal to match horizons starting from d = 0.3, which corresponds

to the medium degree of misspecification. However, for the largest forecasting horizon (h = 66), the

optimal estimation horizon increases from he = 8 only up to he = 32, which is slightly more than half of
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the forecasting horizon of interest. This is because the growing bias and variance terms with an increase

in the estimation horizon start to outweigh the benefits of targeting the forecasting horizons.

6. FORECASTING EXERCISE

We analyse the forecasting performance of the two estimators for the GARCH(1,1) and cGARCH models

specified for returns and realised measures. We do not attempt to conduct a horserace of volatility models.

Rather, we illustrate how our method improves upon the widely-used GARCH models. By considering

these two models, we investigate for which type of models (in terms of complexity) our estimator adds

more forecasting value. In addition to forecasting, we perform a misspecification test on real data.

6.1. Data

To assess the forecasting performance of the two parameter estimation methods outlined in the sections

above we use the data set consisting of 10 individual stocks from the paper by Gorgi et al. (2019).

Specifically, these are the components of the Dow Jones Industrial Average index with ticker symbols

AA, AXP, BA, CAT, GE, HD, HON, IBM, JPM, and KO. Data are available for ten years, from January

2, 2001, to December 31, 2010 and contain T = 2515 trading days for all stocks. The sample contains

both low volatility and high volatility periods, where the latter is due to the ‘financial crisis’.

Daily individual stock returns are taken as open-to-close. As a realised measure estimator, we have

at our disposal the realised kernel of Barndorff-Nielsen et al. (2009). For details on the construction

of the realised kernel, we refer the reader to Gorgi et al. (2019). Having open-to-close returns ensures

one-to-one correspondence between the conditional variance and the realised kernel that excludes the

overnight return.

6.2. In-sample results

Before presenting the forecasting results, we examine the in-sample parameter estimation results for the

GARCH(1,1) and the cGARCH models. Table 4 and Table 5 display in-sample parameter estimates

for the GARCH(1,1) and the MEM-GARCH(1,1) models, respectively. Similarly, Table 6 and Table 7

show in-sample parameters estimates for the cGARCH and the MEM-cGARCH models, respectively.

Parameter estimates are shown for the QML estimation and for the HM estimation method across

selected estimation horizons.

Overall, the MEM-GARCH(1,1) model reveals more pronounced parameter differences across esti-

mation horizons. In particular, as the estimation horizon in the HM method increases, the estimate of

β increases while α correspondingly decreases. In contrast, the standard GARCH(1,1) model, where β

estimate is already near its upper bound for the QML estimation, shows only minor parameter shifts.

The cGARCH model similarly shows small differences in parameter estimates, but in the MEM-cGARCH

model, β and α change. Initially, β increases and α declines as the estimation horizon in the HM estima-

tor increases, but starting around horizon h = 22, β estimate begins to decrease. The parameter ρ, which

captures persistence of long-term volatility, remains close to 1 both for the QML and HM estimators.

We also perform a misspecification test for both types of models. Table 8 depicts the number of

stocks (out of 10) for which the null hypothesis of correct specification is rejected at the 5% significance

level. The test is applied across different horizons for the HM estimator, particularly those used in the

forecasting exercise below. Comparing the GARCH(1,1) with the MEM-GARCH(1,1), we find that for

the GARCH(1,1), the null hypothesis is rejected for a maximum of three stocks at larger estimation

horizons. In contrast, for the MEM-GARCH(1,1) model, the null hypothesis is rejected for all ten stocks
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Table 3. Forecasting Results for a Misspecified Model.

d = 0.05 d = 0.1 d = 0.15 d = 0.2 d = 0.25 d = 0.3 d = 0.35 d = 0.4 d = 0.45

he h = 5

3 -0.05 -0.03 0.05 0.19 0.50 1.09 1.89 2.73 4.38

5 -0.13 -0.10 -0.01 0.12 0.48 1.15 2.06 3.01 4.99

h = 10

3 -0.05 -0.01 0.07 0.28 0.71 1.67 2.85 4.32 7.17

5 -0.12 -0.08 0.03 0.26 0.77 1.99 3.48 5.36 9.20

8 -0.26 -0.23 -0.08 0.14 0.68 2.01 3.61 5.67 10.03

10 -0.36 -0.34 -0.17 0.04 0.59 1.94 3.52 5.62 10.07

h = 22

3 -0.04 0.00 0.13 0.45 1.06 2.61 4.40 7.02 11.85

5 -0.11 -0.07 0.11 0.49 1.22 3.27 5.59 9.03 15.71

8 -0.25 -0.25 0.00 0.42 1.17 3.53 6.11 10.09 18.03

10 -0.36 -0.38 -0.09 0.33 1.11 3.56 6.19 10.37 18.75

14 -0.62 -0.64 -0.32 0.10 0.84 3.49 6.11 10.55 19.31

18 -0.92 -0.96 -0.59 -0.20 0.52 3.26 5.88 10.38 19.27

22 -1.28 -1.35 -0.90 -0.55 0.04 2.81 5.43 9.96 18.93

h = 44

3 -0.04 0.01 0.20 0.64 1.48 3.85 6.44 10.62 17.30

5 -0.13 -0.02 0.21 0.78 1.73 4.98 8.44 13.98 23.43

8 -0.26 -0.25 0.14 0.77 1.73 5.61 9.44 16.01 27.48

10 -0.39 -0.39 0.06 0.70 1.70 5.81 9.73 16.67 28.90

14 -0.68 -0.64 -0.17 0.48 1.44 5.97 9.93 17.44 30.40

18 -0.99 -0.94 -0.41 0.23 1.10 5.94 9.88 17.63 31.01

22 -1.32 -1.31 -0.69 -0.06 0.54 5.55 9.53 17.40 31.19

28 -1.74 -2.02 -1.34 -0.71 -0.20 4.87 9.11 16.92 31.30

32 -2.13 -2.31 -1.76 -1.09 -0.57 4.61 8.84 16.48 31.08

38 -2.70 -2.87 -2.43 -1.68 -1.30 4.02 8.16 15.75 30.57

44 -3.26 -3.62 -3.34 -2.47 -2.36 3.22 7.28 14.80 29.89

h = 66

3 -0.06 0.00 0.25 0.68 1.72 4.62 7.60 12.81 20.18

5 -0.18 -0.04 0.32 0.90 2.06 6.16 10.15 17.21 27.79

8 -0.31 -0.28 0.31 0.93 2.12 7.14 11.55 19.96 33.11

10 -0.44 -0.43 0.26 0.87 2.13 7.50 12.02 20.97 35.06

14 -0.75 -0.66 0.07 0.68 1.89 7.90 12.47 22.35 37.29

18 -1.08 -0.93 -0.14 0.49 1.58 8.03 12.59 22.95 38.35

22 -1.37 -1.26 -0.36 0.29 1.01 7.72 12.33 22.91 38.82

28 -1.69 -1.91 -0.92 -0.24 0.25 7.23 12.05 22.67 39.42

32 -2.00 -2.09 -1.28 -0.48 0.01 7.09 11.95 22.35 39.43

38 -2.41 -2.58 -1.75 -0.88 -0.47 6.76 11.45 21.95 39.42

44 -2.83 -3.23 -2.47 -1.48 -1.40 6.20 10.71 21.25 39.13

52 -3.43 -4.24 -3.42 -2.45 -2.50 5.44 9.53 20.25 38.57

60 -4.06 -5.18 -4.31 -3.59 -3.66 4.18 8.11 19.08 37.89

66 -4.49 -5.72 -4.93 -4.57 -4.75 3.34 7.17 18.03 37.17

Notes: Out-of-sample mean QLIKE loss difference (scaled by 103) across Monte Carlo simulations for the misspecified

MEM-GARCH(1,1) model, considering forecasting horizons h ∈ {5, 10, 22, 44, 66}. The results are shown for nine DGPs from

the LMGARCH(1,1) model for different values of d ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45}. Mean loss is constructed

as the loss from the QML estimator minus the loss from the HM estimator. The estimation horizon for the HM estimator

corresponds to he ∈ {3, 5, 8, 10, 14, 18, 22, 28, 32, 38, 44, 52, 60, 66}. For a given forecasting horizon, the estimation horizon

considered is he ≤ h. In bold highlighted the largest positive mean loss difference for each DGP and estimation horizon he.
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Table 4. In-Sample Results for GARCH(1,1) Model.

he = 1 he = 5 he = 10 he = 22 he = 44 he = 66

ω α β ω α β ω α β ω α β ω α β ω α β

AA 0.02 0.05 0.95 0.02 0.05 0.95 0.02 0.05 0.95 0.01 0.04 0.95 0.01 0.03 0.97 0.01 0.03 0.97

AXP 0.01 0.08 0.91 0.01 0.07 0.93 0.01 0.07 0.93 0.01 0.05 0.95 0.01 0.04 0.96 0.00 0.04 0.96

BA 0.03 0.06 0.93 0.03 0.06 0.93 0.02 0.05 0.94 0.01 0.04 0.95 0.01 0.04 0.96 0.01 0.04 0.96

CAT 0.04 0.06 0.93 0.04 0.06 0.92 0.02 0.04 0.95 0.01 0.03 0.96 0.01 0.03 0.96 0.02 0.04 0.96

GE 0.01 0.05 0.95 0.00 0.04 0.96 0.00 0.04 0.96 0.00 0.04 0.96 0.00 0.04 0.96 0.00 0.05 0.95

HD 0.03 0.06 0.93 0.03 0.06 0.93 0.03 0.07 0.92 0.02 0.06 0.93 0.02 0.06 0.93 0.01 0.05 0.94

HON 0.05 0.10 0.89 0.04 0.10 0.89 0.01 0.04 0.96 0.01 0.03 0.97 0.01 0.03 0.97 0.01 0.03 0.97

IBM 0.01 0.07 0.92 0.01 0.07 0.92 0.01 0.06 0.94 0.01 0.04 0.95 0.01 0.04 0.95 0.01 0.05 0.95

JPM 0.02 0.11 0.89 0.01 0.08 0.92 0.01 0.07 0.93 0.01 0.06 0.94 0.01 0.05 0.95 0.01 0.05 0.95

KO 0.01 0.06 0.94 0.01 0.06 0.93 0.01 0.07 0.93 0.00 0.05 0.95 0.00 0.04 0.96 0.00 0.04 0.96

Notes: In-sample parameter estimates for the GARCH(1,1) model for 10 individual stocks. Results are shown for

the QML estimation method (he = 1) and for the HM estimation method (he ∈ {5, 10, 22, 44, 66}).

at the largest horizons. When comparing the two cGARCH models, we observe a similar pattern: the

MEM-cGARCH model generally has more rejections across stocks than the standard cGARCH model.

However, unlike the GARCH models, the MEM-cGARCH model does not show a monotonic increase in

rejections as the estimation horizon grows.

In practice, a forecaster does not need to run a test for all possible estimation horizons for the HM

estimator. The results from Table 8 indicate that the test’s rejection varies with the estimation horizon.

It may be sufficient to test a few estimation horizons to check for the rejection of the null hypothesis of

correct specification. If the test consistently rejects the null hypothesis, the forecaster then need to find an

appropriate estimation horizon for the HM estimator to construct forecasts. In the following subsection,

we explore the optimal estimation horizon for the considered models and quantify the accuracy gains

from using the proposed estimator.

6.3. Out-of-sample results

When a forecaster is interested in the forecasting horizon of h > 1, there are two options for estimating

parameters using the HM estimation approach. A forecaster directly targets the horizon h or estimates

parameters at a shorter, intermediate horizon. It is possible that estimating parameters at a shorter

horizon yields smaller out-of-sample (OOS) losses due to reduced variance despite an increase in bias in

parameters, and thus forecasts. This situation indicates the bias-variance trade-off where a reduction

in variance might outweigh the increased bias, leading to an overall smaller out-of-sample loss. Below,

we empirically investigate this trade-off by comparing the OOS performance of the HM estimator with

respect to the QML estimator for different intermediate estimation horizons.

We consider h-step-ahead forecasts with h ∈ {5, 10, 22, 44, 66}, where h corresponds to a forecasting

horizon of interest, corresponding to the one or two trading weeks, the one or two trading months, and

lastly, for the next quarter, respectively. Let he denote the estimation horizon for the HM approach. For

each h, we consider a grid of values for he, where he ≤ h. For he ∈ [2, 10], we consider a grid with a step

size of one; for he ∈ [12, 44], we consider a grid with a step size of two, and for he ∈ [48, 66] we consider

a grid with a step size of fourth. This leads to {4, 9, 15, 26, 31} estimators θ̂cT for h = {5, 10, 22, 44, 66},
respectively. To produce forecasts, we use a ‘rolling window’ estimation scheme. Denoting the total

sample size by T , we let m be the fixed size of the estimation window. We formulate the first h-step-
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Table 5. In-Sample Results for MEM-GARCH(1,1) Model.

he = 1 he = 5 he = 10 he = 22 he = 44 he = 66

ω α β ω α β ω α β ω α β ω α β ω α β

AA 0.12 0.33 0.65 0.07 0.25 0.74 0.05 0.20 0.79 0.04 0.16 0.83 0.02 0.07 0.93 0.01 0.07 0.93

AXP 0.03 0.42 0.58 0.02 0.31 0.69 0.02 0.28 0.72 0.01 0.20 0.80 0.00 0.05 0.95 0.00 0.05 0.95

BA 0.06 0.33 0.65 0.04 0.24 0.75 0.04 0.22 0.77 0.03 0.16 0.83 0.01 0.06 0.93 0.01 0.07 0.93

CAT 0.10 0.38 0.59 0.07 0.30 0.68 0.06 0.28 0.70 0.05 0.25 0.74 0.02 0.07 0.93 0.02 0.08 0.92

GE 0.03 0.41 0.59 0.02 0.28 0.72 0.01 0.25 0.75 0.00 0.08 0.92 0.00 0.06 0.94 0.00 0.07 0.93

HD 0.07 0.37 0.61 0.04 0.26 0.73 0.03 0.24 0.75 0.02 0.15 0.84 0.01 0.08 0.92 0.01 0.09 0.91

HON 0.07 0.41 0.58 0.07 0.34 0.64 0.06 0.33 0.66 0.05 0.30 0.69 0.01 0.04 0.96 0.01 0.05 0.95

IBM 0.03 0.36 0.63 0.03 0.30 0.69 0.02 0.29 0.70 0.02 0.27 0.72 0.01 0.09 0.90 0.01 0.10 0.90

JPM 0.06 0.51 0.49 0.03 0.37 0.63 0.03 0.31 0.69 0.01 0.08 0.92 0.01 0.05 0.95 0.01 0.05 0.95

KO 0.03 0.38 0.60 0.02 0.27 0.72 0.01 0.23 0.76 0.01 0.22 0.78 0.01 0.17 0.83 0.01 0.15 0.85

Notes: In-sample parameter estimates for the MEM-GARCH(1,1) model for 10 individual stocks. Results are

shown for the QML estimation method (he = 1) and for the HM estimation method (he ∈ {5, 10, 22, 44, 66}).

Table 6. In-Sample Results for cGARCH model.

he = 1 he = 10 he = 22 he = 44

ω α β ϕ ρ ω α β φ ρ ω α β φ ρ ω α β ϕ ρ

AA 0.01 0.03 0.80 0.04 1.00 0.01 0.05 0.86 0.04 1.00 0.01 0.06 0.85 0.05 1.00 0.01 0.11 0.70 0.05 1.00

AXP 0.01 0.07 0.84 0.05 1.00 0.01 0.09 0.82 0.06 1.00 0.01 0.09 0.80 0.06 1.00 0.00 0.11 0.72 0.06 1.00

BA 0.01 0.04 0.89 0.03 1.00 0.01 0.05 0.88 0.03 1.00 0.01 0.04 0.91 0.03 1.00 0.01 0.02 0.95 0.03 1.00

CAT 0.02 0.04 0.88 0.03 0.99 0.01 0.08 0.79 0.04 1.00 0.01 0.08 0.76 0.04 1.00 0.01 0.08 0.67 0.04 1.00

GE 0.00 0.07 0.73 0.04 1.00 0.00 0.09 0.65 0.04 1.00 0.00 0.12 0.46 0.05 1.00 0.00 0.00 0.39 0.04 1.00

HD 0.02 0.03 0.91 0.04 0.99 0.02 0.05 0.88 0.05 0.99 0.02 0.03 0.89 0.06 0.99 0.01 0.04 0.91 0.06 1.00

HON 0.01 0.09 0.80 0.03 0.99 0.01 0.09 0.81 0.04 1.00 0.01 0.12 0.73 0.04 1.00 0.01 0.17 0.53 0.04 1.00

IBM 0.01 0.04 0.87 0.04 1.00 0.01 0.08 0.81 0.05 0.99 0.01 0.08 0.78 0.05 0.99 0.01 0.08 0.64 0.05 1.00

JPM 0.01 0.08 0.79 0.06 1.00 0.01 0.07 0.81 0.07 1.00 0.01 0.08 0.73 0.07 1.00 0.01 0.07 0.70 0.07 1.00

KO 0.00 0.05 0.84 0.03 1.00 0.00 0.09 0.78 0.05 1.00 0.00 0.12 0.73 0.06 1.00 0.00 0.14 0.63 0.06 1.00

Notes: In-sample parameter estimates for the cGARCH(1,1) model for 10 individual stocks. Results are shown

for the QML estimation method (he = 1) and for the HM estimation method (he ∈ {5, 10, 22, 44, 66}).

Table 7. In-Sample Results for MEM-cGARCH model.

he = 1 he = 10 he = 22 he = 44

ω α β ϕ ρ ω α β ϕ ρ ω α β ϕ ρ ω α β ϕ ρ

AA 0.03 0.27 0.57 0.09 0.99 0.02 0.17 0.74 0.12 1.00 0.02 0.17 0.74 0.14 1.00 0.02 0.33 0.51 0.16 1.00

AXP 0.01 0.27 0.54 0.19 1.00 0.01 0.21 0.71 0.17 1.00 0.00 0.25 0.67 0.18 1.00 0.00 0.33 0.55 0.16 1.00

BA 0.01 0.28 0.57 0.09 1.00 0.01 0.22 0.71 0.08 1.00 0.01 0.22 0.71 0.08 1.00 0.01 0.23 0.68 0.11 1.00

CAT 0.06 0.21 0.25 0.25 0.98 0.02 0.23 0.70 0.10 0.99 0.01 0.26 0.67 0.11 1.00 0.01 0.29 0.59 0.16 1.00

GE 0.01 0.31 0.53 0.13 1.00 0.00 0.24 0.65 0.15 1.00 0.00 0.32 0.53 0.16 1.00 0.00 0.40 0.34 0.14 1.00

HD 0.03 0.25 0.33 0.22 0.99 0.02 0.17 0.75 0.14 1.00 0.01 0.22 0.68 0.15 1.00 0.01 0.26 0.55 0.16 1.00

HON 0.01 0.33 0.55 0.10 1.00 0.01 0.29 0.62 0.10 1.00 0.01 0.36 0.53 0.11 1.00 0.01 0.49 0.30 0.11 1.00

IBM 0.03 0.16 0.30 0.30 0.99 0.01 0.17 0.76 0.17 0.99 0.01 0.20 0.72 0.19 0.99 0.01 0.28 0.58 0.20 1.00

JPM 0.02 0.37 0.42 0.19 1.00 0.01 0.28 0.61 0.19 1.00 0.01 0.32 0.55 0.18 1.00 0.01 0.37 0.46 0.16 1.00

KO 0.01 0.22 0.52 0.20 0.99 0.01 0.12 0.81 0.16 1.00 0.01 0.11 0.83 0.18 1.00 0.01 0.13 0.77 0.20 1.00

Notes: In-sample parameter estimates for the MEM-cGARCH(1,1) model for 10 individual stocks. Results are

shown for the QML estimation method (he = 1) and for the HM estimation method (he ∈ {5, 10, 22, 44, 66}).
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Table 8. Empirical Rejection Frequency of a Misspecification Test.

Rejection Frequency

he GARCH(1,1) MEM-GARCH(1,1) cGARCH MEM-cGARCH he GARCH(1,1) MEM-GARCH(1,1) cGARCH MEM-cGARCH

2 0 2 0 2 26 2 5 0 2

3 1 6 0 3 28 2 5 0 2

4 1 6 1 5 30 2 6 0 2

5 0 6 2 7 32 2 8 1 2

6 0 6 1 7 34 2 8 1 2

7 0 7 1 7 36 3 9 1 2

8 0 7 2 7 38 3 9 1 2

9 0 7 3 7 40 3 9 1 2

10 0 7 3 7 42 3 10 1 2

12 1 7 2 5 44 3 10 1 2

14 3 5 2 5 48 2 10 2 2

16 3 6 5 4 52 2 10 2 2

18 3 5 5 4 56 2 10 1 2

20 3 6 5 4 60 2 10 2 2

22 2 5 6 4 66 2 10 2 2

24 2 5 0 2

Notes: Empirical rejection frequency of a misspecification for GARCH and cGARCH models for different esti-

mation horizons he used to obtain the HM estimator. Significance level is 5%. For the GARCH(1,1) and the

MEM-GARCH(1,1) we use West (1997) estimator to construct the test statistic. For the cGARCH and the

MEM-cGARCH models, we use the Newey and West (1987) estimator with the number of lags determined by the

following rule: k × he, where k = 30 for he ≤ 5, k = 10 for 5 < he ≤ 10, k = 5 for 10 < he ≤ 22, and k = 1/2 for

he > 22. The scaling factors were determined empirically to ensure an accurate size of a test.

ahead cumulative return variance forecast at time m for the period m + 1 : m + h using a sample

of observations indexed 1, . . . ,m, and compare this forecast with cumulative realised measure (realised

kernel) defined as xm+1,h = xm+1+xm+2+ . . .+xm+h. The second forecast is formulated at time m+1

using a sample of previous observations indexed by 2, . . . ,m+1, ensuring that the in-sample size remains

the same. The second forecast is compared with x(m+1)+1,h = x(m+1)+1 + x(m+1)+2 + . . . + x(m+1)+h.

Iterating this procedure forward yields n = T − m − h + 1 forecasts for a given h. We repeatedly

re-estimate parameters each 25 observations, which roughly corresponds to monthly updating.

Table 9 presents the mean difference between the OOS loss evaluated at the HM estimator θ̂cT and the

QML estimator θ̂dT for each of the 10 assets and each forecasting horizon h. The first Table shows results

for a standard GARCH(1,1) model, while the second shows results for a MEM-GARCH(1,1) model. In

both Tables the mean loss difference is reported for the ‘best’ estimation horizon for a horizon-matched

approach, where ‘best’ means the horizon which minimises the OOS loss evaluated at θ̂cT for a forecasting

horizon h. The ‘best’ estimation horizon (reported he) is often smaller than h, in particular for larger h.

However, for the MEM-GARCH(1,1) model, estimation and forecasting horizons coincide for h = 5 and

h = 10 for many stocks. From the Table, it is evident that in all cases the average OOS loss difference is

negative, favouring the use of the HM estimator. Moreover, for both types of models, the absolute value

of the loss difference is relatively small for small to medium horizons (h = 5, 10, 22). The loss difference

increases for larger horizons, particularly for the MEM-GARCH(1,1) model, indicating that the relative

performance of the HM estimator improves. For some stocks, our estimator reduces the OOS loss by up

to 0.19 compared to the QML estimator.

To determine whether these differences in OOS loss are statistically significant, we conduct the

Diebold-Mariano (DM) test in the framework of Giacomini and White (2006), which fits the ‘rolling

window’ estimation scheme. The results are presented in Appendix A7, with t-statistics for the DM test
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Table 9. Out-of-Sample Performance for GARCH(1,1) Models.

Standard GARCH(1,1)

h = 5 h = 10 h = 22 h = 44 h = 66

he = 4 he = 4 he = 4 he = 3 he = 3

AA -0.01 -0.01 -0.01 -0.02 -0.03

he = 4 he = 7 he = 8 he = 14 he = 14

AXP 0.00 -0.01 -0.01 -0.02 -0.04

he = 2 he = 2 he = 2 he = 10 he = 10

BA -0.01 -0.01 -0.01 -0.01 -0.02

he = 4 he = 4 he = 5 he = 5 he = 5

CAT -0.01 -0.01 -0.02 -0.02 -0.03

he = 2 he = 10 he = 12 he = 14 he = 14

GE -0.02 -0.02 -0.03 -0.04 -0.07

he = 5 he = 5 he = 5 he = 5 he = 5

HD -0.01 -0.01 -0.01 -0.01 -0.02

he = 2 he = 2 he = 7 he = 7 he = 7

HON -0.02 -0.03 -0.03 -0.03 -0.05

he = 4 he = 4 he = 4 he = 3 he = 3

IBM -0.01 -0.01 -0.02 -0.02 -0.03

he = 2 he = 2 he = 2 he = 2 he = 2

JPM -0.01 -0.01 -0.02 -0.03 -0.05

he = 2 he = 2 he = 2 he = 2 he = 2

KO -0.01 -0.02 -0.02 -0.02 -0.02

MEM-GARCH(1,1)

h = 5 h = 10 h = 22 h = 44 h = 66

he = 5 he = 10 he = 12 he = 32 he = 32

AA 0.00 -0.01 -0.02 -0.06 -0.11

he = 3 he = 10 he = 18 he = 44 he = 22

AXP 0.00 0.00 -0.02 -0.07 -0.11

he = 5 he = 8 he = 7 he = 14 he = 14

BA 0.00 0.00 0.00 -0.01 -0.02

he = 5 he = 10 he = 14 he = 20 he = 20

CAT 0.00 -0.02 -0.04 -0.10 -0.15

he = 5 he = 10 he = 16 he = 30 he = 22

GE 0.00 -0.01 -0.04 -0.13 -0.19

he = 3 he = 10 he = 16 he = 32 he = 34

HD 0.00 -0.01 -0.03 -0.08 -0.13

he = 2 he = 2 he = 14 he = 14 he = 14

HON 0.00 0.00 0.00 -0.02 -0.03

he = 5 he = 10 he = 10 he = 10 he = 16

IBM 0.00 0.00 -0.01 -0.02 -0.04

he = 3 he = 10 he = 18 he = 34 he = 34

JPM 0.00 -0.01 -0.06 -0.11 -0.18

he = 2 he = 8 he = 5 he = 8 he = 9

KO 0.00 0.00 -0.01 -0.01 -0.02

Notes: Out-of-sample average loss difference for QLIKE loss function for 10 individual stocks. Loss difference is defined

as ∆L = L(x̃t,h, σ̃
2
t,h(θ̂

c
T )) − L(x̃t,h, σ̃

2
t,h(θ̂

d
T )), where L denotes the QLIKE loss evaluated at the QML estimator θ̂dT and

at the HM estimator θ̂cT . Considered forecasting horizons are h ∈ {5, 10, 22, 44, 66}. Horizon at which θ̂cT is obtained does

not necessarily match forecasting (evaluation) horizon. For each forecasting horizon and individual stock we report the

estimation horizon (he) which minimizes the average QLIKE loss evaluated at the HM estimator.

shown in Table 13 for the standard GARCH(1,1) model and Table 11 for the MEM-GARCH(1,1) model.

For both models, we use h− 1 and 0.75n1/3 lags to estimate the asymptotic variance-covariance matrix

of the sample average loss difference, following recommendations of Giacomini and White (2006) and

Andrews (1991), respectively. A negative t-statistic indicates that the HM estimator generates lower

average OOS loss. We conduct a two-sided test at the 5% significance level. It is important to mention

that the significance of results vary across two different lag lengths. In particular, it is not surprising

that for smaller lag (0.75n1/3) the QML estimator is significantly outperformed by the HM estimator,

while for larger lag, the difference is not statistically significant (except for isolated cases).

In addition to Table 9, Figure 7 and Figure 8 plot OOS loss difference averaged across all ten

stocks for the GARCH(1,1) model and for the MEM-GARCH(1,1) model, respectively. As visible from

the Figures, the optimal estimation horizon for the HM estimator is consistently larger for the MEM-

GARCH(1,1) model in contrast to the standard GARCH(1,1). The ‘optimal’ horizon is defined as the one

at which the difference in losses between the HM and QML estimators is most negative, indicating the

smallest loss for the HM estimator at that horizon. In particular, the difference in optimal estimation

horizons for the two models is most noticeable for larger forecasting horizons. In particular, for the

GARCH(1,1) the optimal horizon is around he = 7 for forecasting horizons h = 44 and h = 66, while for

the MEM-GARCH(1,1) is it around he = 16. For these models, the reduction in the OOS loss reaches

up to 0.035 and 0.092, respectively. Moreover, as the estimation horizon increases, the performance of
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the HM estimator deteriorates much more steeply for the GARCH(1,1) model compared to the MEM-

GARCH(1,1) model.

Figure 7. Out-of-Sample Performance Averaged Across Stocks for GARCH(1,1) Model.

Notes: Out-of-sample average QLIKE loss difference averaged across 10 individual stocks for the MEM-GARCH(1,1)

model. Loss difference is defined as ∆L = L(x̃t,h, σ̃
2
t,h(θ̂

c
T ))− L(x̃t,h, σ̃

2
t,h(θ̂

d
T )), where L denotes the QLIKE loss function.

Each plot corresponds to a specific forecasting horizon h ∈ {5, 10, 22, 44, 66}. Horizontal axis (he) denotes the estimation

horizon for the HM estimator, which may be equal to or smaller than the forecasting horizon.

We now analyse the results of the cGARCH model. Figure 9 and Figure 10 plot the OOS loss

differences averaged across all ten stocks for the cGARCH model and for the MEM-cGARCH model,

respectively. For the standard cGARCH model, the optimal estimation horizon, in particular for forecast-

ing horizons h = 44 and h = 66, is lower than that for the standard GARCH(1,1) model. Additionally,

while there is still the OOS gain in using the HM estimator for the cGARCH model, the amplitude of this

gain is smaller in contrast to the standard GARCH(1,1) model: the maximal decrease in the OOS loss for

the cGARCH model is roughly 0.005 for the largest forecasting horizon. For the MEM-cGARCH model,

the optimal estimation horizon is similar to that of the MEM-GARCH(1,1) model. However, there are

two main differences: first, the gains from using the HM estimator are again smaller, and second, the

reduction in gains becomes more pronounced once the estimation horizon exceeds the optimal one. This

suggest that, overall, the HM estimator provides larger forecasting gains in simpler models, which are

more likely to be misspecified.

In addition to these aggregated results, Appendix A7 provides results for each stock individually in

Table 12. Table 13 and Table 11 present the DM statistic, indicating whether the loss differences are

statistically significant.
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Figure 8. Out-of-Sample Performance Averaged Across Stocks for MEM-GARCH(1,1) Model.

Notes: Out-of-sample average QLIKE loss difference averaged across 10 individual stocks for the MEM-GARCH(1,1)

model. Loss difference is defined as ∆L = L(x̃t,h, σ̃
2
t,h(θ̂

c
T ))− L(x̃t,h, σ̃

2
t,h(θ̂

d
T )), where L denotes the QLIKE loss function.

Each plot corresponds to a specific forecasting horizon h ∈ {5, 10, 22, 44, 66}. Horizontal axis (he) denotes the estimation

horizon for the HM estimator, which may be equal to or smaller than the forecasting horizon.

Figure 9. Out-of-Sample Performance Averaged Across Stocks for cGARCH Model.

Notes: Out-of-sample average QLIKE loss difference averaged across 10 individual stocks for the cGARCH model. Loss

difference is defined as ∆L = L(x̃t,h, σ̃
2
t,h(θ̂

c
T )) − L(x̃t,h, σ̃

2
t,h(θ̂

d
T )), where L denotes the QLIKE loss function. Each plot

corresponds to a specific forecasting horizon h ∈ {5, 10, 22, 44, 66}. Horizontal axis (he) denotes the estimation horizon for

the HM estimator, which may be equal to or smaller than the forecasting horizon.
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Figure 10. Out-of-Sample Performance Averaged Across Stocks for MEM-cGARCH(1,1) Model.

Notes: Out-of-sample average QLIKE loss difference averaged across 10 individual stocks for the MEM-cGARCH model.

Loss difference is defined as ∆L = L(x̃t,h, σ̃
2
t,h(θ̂

c
T )) − L(x̃t,h, σ̃

2
t,h(θ̂

d
T )), where L denotes the QLIKE loss function. Each

plot corresponds to a specific forecasting horizon h ∈ {5, 10, 22, 44, 66}. Horizontal axis (he) denotes the estimation horizon

for the HM estimator, which may be equal to or smaller than the forecasting horizon.

7. DISCUSSION

This paper proposes an estimation method to improve multi-period volatility forecasts from misspecified

GARCH-type models. In many financial decision-making environments, it may not be possible to sub-

stitute the given statistical model, at least in the short term, due to potential institutional barriers that

hinder such changes. We overcome this challenge by maintaining the functional form of the candidate

model and estimating its parameters by ‘matching’ the estimation loss function to the specification of the

forecast evaluation loss function, which we assume to be given ex-ante by the decision-maker. ‘Matching’

of loss functions is done to reduce the impact of model misspecification on the accuracy of multi-period

volatility forecasts (Hansen & Dumitrescu, 2022).

With the primary purpose of our estimator being forecasting, we propose to use it in a misspecification

test based on the Hausman principle (Hausman, 1978). Indeed, while our estimator is by construction

consistent for the true parameter under correct model specification, in cases of model misspecification, it

converges in probability to the pseudo-true value that differs from the pseudo-true value from the standard

estimation method. We explore this result by comparing the two estimators in the misspecification

test. In a Monte-Carlo study, we examine the size and power properties of the test using the hard-

to-beat GARCH(1,1) model, treating it as misspecified with respect to the empirical phenomenon of

long-memory dynamics in volatility. The results demonstrate that the test is reasonably sized and has

increasing power with increasing long-memory misspecification. The highest power is achieved when

our estimator is derived using the shortest horizon in the estimation loss function. Additionally, we

recover multi-period volatility forecasts from simulated data and find that, under correct specification,

both estimators perform equivalently. However, our estimator yields more accurate forecasts when the
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model is misspecified. In these cases, our findings show that for our estimator, it is optimal to ‘match’

the estimation loss function to a shorter horizon than the forecasting horizon. The shorter optimal

estimation horizon reflects a bias-variance trade-off: the proposed estimator adds additional variance to

the forecast to reduce the bias arising from model misspecification.

We apply the proposed estimation method to an out-of-sample forecasting exercise across ten series of

returns and realised measures from the paper by Gorgi et al. (2019) over 2001−2010. Using GARCH(1,1)

and cGARCH models specified for returns and realised measures, we show that our estimator consistently

produces more accurate out-of-sample forecasts across different forecasting horizons, from short to large.

Three main findings emerge. First, the accuracy gains from our estimator are more significant for the

realised measures models, suggesting that our estimator performs better in environments with higher

signals about the volatility. Second, for both returns and realised measures types of models, the optimal

estimation horizon for our estimator is lower than the forecasting horizon of interest, consistent with

results from our Monte-Carlo study. However, this discrepancy between the estimation and forecasting

horizons is more pronounced for the model based on returns, particularly at longer forecasting horizons.

Third, by comparing GARCH(1,1) with cGARCH models, we find that the amplitude of gains from

our estimator is smaller for cGARCH models. This indicates that the value of our estimator is more

pronounced for underparameterised models, which are more likely to be misspecified.

We conclude with practical guidelines for applying our estimation approach in forecasting contexts.

Like other misspecification tests, the test that this paper develops provides only statistical evidence of

model misspecification without identifying its specific sources. In this paper, we demonstrate one such

source - long-memory dynamics, a common characteristic of volatility - that the test detects. Overall, the

rejection of the test’s null hypothesis should prompt further adjustments to the baseline model. However,

since these adjustments may be limited, we suggest the following approach. Generally, we recommend

performing the test for several estimation horizons below the forecasting one to check whether the test

consistently rejects the null hypothesis or not. If the test does not reject the null hypothesis at a given

significance level for several horizons, we recommend estimating the baseline model using the standard

estimation method and constructing forecasts accordingly. If the test rejects the null, we recommend

using our estimator instead. For models specified for realised measures, we recommend aligning the

estimation horizon exactly to the forecasting horizon for shorter forecasting horizons (e.g., h = 5, 10).

For medium (e.g., h = 22, 44) and large forecasting horizons, we suggest using the estimation horizon

around he = 15. For models specified for returns, we advise using either the standard estimator for

short to medium forecasting horizons or our estimator with short estimation horizons close to he = 3.

However, for longer forecasting horizons, we recommend our estimator with an estimation horizon close

to ten.
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APPENDIX

A1. GARCH(2,2) representation of cGARCH

Using the lag operator L, the first equation in (17) could be written as

σ2
t = qt + α(r2t−1 − Lqt) + β(σ2

t−1 − Lqt)

= αε2t−1 + βσ2
t−1 + (1− (α+ β)L)qt,

(53)

where Lqt = qt−1. In the similar manner, we could re-write the second equation in (17) for long-run

component qt:

qt = ω + ρLqt + ϕ(r2t−1 − σ2
t−1) (54)

implying that

qt =
1

1− ρL

(
ω + ϕ(r2t−1 − σ2

t−1)
)
. (55)

Plugging (55) into (53) results in

σ2
t = αε2t−1 + βσ2

t−1 +
1− (α+ β)L

1− ρL
(ω + ϕ(r2t−1 − σ2

t−1)). (56)

Multiplying both sides by (1− ρL) gives the GARCH(2,2) structure for σ2
t .

A2. Autocorrelation function for the GARCH and the cGARCH models

The GARCH(1,1) model can be expressed as the ARMA(1,1) model for the second-order sequence {r2t }
of squared returns (residuals), that is

r2t = ω + (α+ β)r2t−1 + vt − βvt−1, equivalently (1− αL− βL)r2t = ω + (1− βL)vt, (57)

with L the lag operator Lvt = vt−1 and vt = r2t − σ2
t being the martingale difference sequence (MDS),

and thus, white-noise (WN) innovation term. The autocovariance function of the ARMA(1,1) model

displays the shape of that for an AR(1) model for k ≥ 2, specifically

γr2(k) = (α+ β)γr2(k − 1), k ≥ 2. (58)

Hence, the autocorrelation function for squared returns is equal to

ρr2(k) =
γr2(k)

γr2(0)
= (α+ β)k−1ρr2(1), k ≥ 2, (59)

with

ρr2(1) =
α(1− (α+ β)β)

1− (α+ β)2 + α2
, (60)

where γr2(k) = E[(r2t − σ2)(r2t−k − σ2)]. This shows that the autocorrelation of squared return process

decreases towards zero proportionally to (α+ β)k−1.

As discussed above, the cGARCH model has a reduced form of the GARCH(2,2) model. Specifically,

(17) can be shown to be

σ2
t = (1− α− β)ω + (α+ ϕ)r2t−1 + (−ϕ(α+ β)− ρα)r2t−2

+ (ρ+ β − ϕ)σ2
t−1 + (ϕ(α+ β)− ρβ)σ2

t−2,
(61)

which is the GARCH(2,2) model of the form

σ2
t = ω′ + α′

1r
2
t−1 + α′

2r
2
t−2 + β′

1σ
2
t−1 + β′

2σ
2
t−2 (62)
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with

ω′ = (1− α− β)ω

α′
1 = α+ ϕ

α′
2 = −ϕ(α+ β)− ρα

β′
1 = ρ+ β − ϕ

β′
2 = ϕ(α+ β)− ρβ.

(63)

Similar to the GARCH(1,1) model, the GARCH(2,2) can be formulated as the ARMA(2,2) process

by substituting the variables σ2
t−j by r2t−j − vt−j for j = 1, 2:

r2t = ω′ +
2∑

i=1

(α′
i + β′

i)r
2
t−i + vt −

2∑

j=1

β′
jvt−j . (64)

The autocovariance function of an ARMA(2,2) model displays the shape of that for an AR(2) model for

k ≥ 3, that is

γr2(k) = (α+ β + ρ)γr2(k − 1) + (−ρ(α+ β))γr2(k − 2), k ≥ 3, (65)

where γr2(0), γr2(1) and γr2(2) can be obtained from the set of Yule-Walker equations.

A3. MDS score property

Under correct specification of the first two conditional moments, it follows that

E[sct(θ0)|Ft−1] = 0,

and hence E[sct(θ0)] = 0, where the score sct(θ) is defined as

sct(θ) =
∂QLIKE(r̃2t,h, σ̃

2
t,h(θ))

∂θ
= (σ̃2

t,h(θ)− r̃2t,h)
1

σ̃4
t,h(θ)

∂σ̃2
t,h(θ)

∂θ
.

Proof. The score evaluated at the true parameter vector θ0 has the martingale difference property:

E[E[sct(θ0)|Ft−1]] = E

[

E
[
(σ̃2

t,h(θ0)− r̃2t,h)|Ft−1

] 1

σ̃4
t,h(θ0)

∂σ̃2
t,h(θ)

∂θ

∣
∣
∣
∣
θ=θ0

]

= 0,

since E[r̃2t,h|Ft−1] = σ̃2
t,h(θ0), which follows from the assumptions that the conditional mean and variance

functions are correctly specified. By the law of iterated expectations,

E[sct(θ0)] = E[E[sct(θ0)|Ft−1]]

= 0.

A4. MLE for MEM-GARCH model

GARCH-type model for realised measure is specified as xt = σ2
t ut, where xt is the realised measure, with

σ2
t following the GARCH structure, where we assume conditional gamma distribution for the error term

ut:

f(ut|Ft−1) =
1

Γ(a)ba
ua−1
t exp (−ut/b). (66)

Imposing the unit mean property on the distribution of ut implies that b = 1/a, and thus

f(ut|Ft−1) =
1

Γ(a)
aaua−1

t exp (−aut). (67)
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Using a theorem for a transformation of a random variable, the conditional density of xt is given by

f(xt|Ft−1) =
1

σ2
t

1

Γ(a)
aa
(
xt
σ2
t

)a−1

exp

(

−a xt
σ2
t

)

, (68)

implying that the log of the conditional density is equal to

log f(xt|Ft−1) = (a− 1) log xt + a log a− log Γ(a)− a

(

log σ2
t +

xt
σ2
t

)

. (69)

A5. Detailed scores for MEM GARCH(1,1) model

We provide a detailed expression for the scores of the MEM-GARCH(1,1) model, which we use to compute

the empirical size and power for the misspecification test. This is needed for computing the estimator

by West (1997).

Score vectors for the QML and HM estimators are defined as follows:

sdt (θ) = − ∂

∂θ
QLIKE(xt, σ

2
t (θ)) = − ∂

∂θ

(

lnσ2
t (θ) +

xt
σ2
t (θ)

)

=

(
xt − σ2

t (θ)

σ4
t (θ)

)
∂σ2

t (θ)

∂θ

sct(θ) = − ∂

∂θ
QLIKE(x̃t,h, σ̃

2
t,h(θ))

= − ∂

∂θ

(

ln σ̃2
t,h(θ) +

x̃t,h
ln σ̃2

t,h(θ)

)

=

(

x̃t,h − σ̃2
t,h(θ)

σ̃4
t,h(θ)

)

∂σ̃2
t,h(θ)

∂θ
,

(70)

where the conditional variance of the cumulative return can be written as

σ̃2
t,h(θ) =

h−1∑

j=0

σ2
t+j|t−1(θ) = hσ2 +

1− (α+ β)h

1− α− β
(σ2

t − σ2), (71)

where for simplicity we write σ2
t instead of σ2

t|t−1.

In (70), we further expand ∂σ2
t (θ)/∂θ and ∂σ̃2

t,h(θ)/∂θ as

∂σ̃2
t,h(θ)

∂θ
= (σ2

t (θ)− σ2)
∂

∂θ

(
1− (α+ β)h

1− α− β

)

+

(

h− 1− (α+ β)h

1− α− β

)
∂σ2

∂θ

+
1− (α+ β)h

1− α− β

∂σ2
t (θ)

∂θ
,

(72)

with

∂

∂θ

(
1− (α+ β)h

1− α− β

)

=
1− (α+ β)h − h(α+ β)h−1 + h(α+ β)h

(1− α− β)2







0

1

1






,

∂σ2

∂θ
=

1

1− α− β







1

σ2

σ2






,

(73)

and

∂σ2
t (θ)

∂θ
=







1

xt−1

σ2
t−1







+ β
σ2
t−1(θ)

∂θ
=

t−1∑

j=0

βj







1

xt−j−1

σ2
t−j−1






, (74)

taking ∂σ2
1/∂θ = 0 when treating σ2

1 as a fixed constant, not depending on parameters θ.

Note that when estimating the parameters of the MEM-GARCH(1,1) using the QML method, we

use the MFE Toolbox for Matlab developed by Kevin Sheppard. In this Toolbox, the likelihood function
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maximised is defined as − 1
2

∑T
t=1

(

lnσ2
t (θ) +

xt

σ2

t
(θ)

)

, which is different from the estimation criterion

defined above by a scale of 1/2. To construct the estimator of the asymptotic variance-covariance

matrix of the joint estimator, we use the estimated Hessian output from the Matlab estimation function.

Consequently, we divide xt for the ‘cumulative’ score and zt for the ‘daily’ score by 2 to obtain the

correctness of results

Consider:

Ccd =
h−1∑

j=0

E[scts
d
t+j

′
]

=

h−1∑

j=0

E[ztutεt+j−h+1xt+j
′]

=

h−1∑

j=0

E[zt(εt + ψ1εt−1 + . . .+ ψh−1εt−h+1)εt+j−h+1]

=
h−1∑

j=0

h−1∑

i=0

E[ztψiεt−iεt+j−h+1x
′
t+j ]

=

h−1∑

j=0

E[ε2t+j−h+1ztψh−1−jx
′
t+j ]

= E



ε2t





h−1∑

j=0

ψjzt+j



xt+h−1
′



 ,

(75)

where the fifth equality, where the expression is simplified from a double sum to a single sum, uses

the fact that E[εtεs] = 0 for t 6= s; the sixth equality uses covariance-stationarity of E[ε2t−h+1ztx
′
t] to

express ψh−1E[ε
2
t−h+1ztx

′
t] + ψh−2E[ε

2
t−h+2ztx

′
t+1] + . . .+ ψ0E[ε

2
t ztx

′
t+h−1] as ψh−1E[ε

2
t zt+h−1x

′
t+h−1] +

ψh−2E[ε
2
t zt+h−2x

′
t+h−1] + . . .+ ψ0E[ε

2
t ztx

′
t+h−1].

Consider:

Ccc =
h−1∑

j=−h+1

E[scts
c′
t+j ]

= E[u2t ztz
′
t] +

h−1∑

j=1

E[utut+j(ztz
′
t+j + zt+jz

′
t)]

= E[(ε2t + ψ1ε
2
t−1 + . . .+ ψ2

h−1ε
2
t−h+1)ztz

′
t]

+

h−1∑

j=1

E[(ψ0ψjε
2
t + ψ1ψj+1ε

2
t−1 + . . .+ ψh−j−1ψh−1ε

2
t−h+j+1)(ztz

′
t+j + zt+jz

′
t)]

= E



ε2t

h−1∑

j=0

ψ2
j zt+jz

′
t+j



+
h−1∑

j=1

E

[

ε2t

h−j−1
∑

i=0

ψiψi+j(zt+iz
′
t+i+j + zt+i+jz

′
t+i)

]

= E



ε2t





h−1∑

j=0

ψjzt+j









h−1∑

j=0

ψjzt+j





′

 ,

(76)

where the third inequality uses the fact that E[εtεs] = 0 for t 6= s, the fourth inequality uses covariance-

stationarity of ε2t−1ztz
′
t, which would imply, for instance, E[ε2t−1ztz

′
t] = E[ε2t zt+1z

′
t+1].
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Using structure of a GARCH(1,1) model, we can express ψt in terms of GARCH(1,1) parameters:

ut =
h−1∑

j=0

(r2t − σ2
t+j|t−1) =

h−1∑

j=0

(r2t+j − σ2
t+j) +

h−1∑

j=1

(σ2
t+j − σ2

t+j|t−1)

= (r2t+h−1 − σ2
t+h−1) +

h−2∑

i=0

(

1 + α
1− (α+ β)h−i−1

1− α− β
(r2t+i − σ2

t+i)

)

=

h−1∑

j=0

ψjεt−j ,

(77)

(78)

A6. Plots: admissible parameter values for LMGARCH(1,d,1)

To guarantee that the conditional variance is non-negative a.s. for all t, we need to show that in the

ARCH(∞) it is satisfied that ψi ≥ 0. Conrad and Haag (2006) derive necessary and sufficient conditions

for that, which greatly enlarge the set of sufficient conditions by Baillie et al. (1996), Bollerslev and

Mikkelsen (1996) and Chung (1999), which have been shown to be quite restrictive. From Corollary 1 of

Conrad and Haag (2006), it follows that the conditional variance of the LMGARCH(1,d,1) for the case

with 0 < β < 1 is non-negative a.s. iff

either ψ1 ≥ 0 and φ ≤ f2, or for k > 2 with fk−1 < φ ≤ fk, it holds that ψk−1 ≥ 0, (79)

where

ψ1 = d+ φ− β

ψi = βψi−1 + (fi − φ)(−gi−1), for all i ≥ 2,
(80)

with the coefficients gi and fi defined from (1− L)d =
∑∞

i=0 giL
i:

g0 = 1, gi = figi−1, fi =
i− 1− d

i
, for i = 1, 2, . . . (81)

Given quite high value of φ, we check the non-negativity of the conditional variance by ensuring that

there exists a k > 2 such that the condition fk−1 < φ ≤ fk and ψk−1 ≥ 0 hold. Figure 11 depicts the

admissible set of values for φ and β given the value of d such that the constraints are satisfied.

Figure 11. Necessary and sufficient parameter set for the LMGARCH(1,d,1) model for different combinations

of (φ, β) with d ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45}.
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Notes: Necessary and sufficient conditions are taken from Corollary 1 from Conrad and Haag (2006).

A7. Out-of-sample forecasting
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Table 10. Out-of-sample performance: DM t-statistic for standard GARCH(1,1) model.

# of lags : h− 1

h = 5 h = 10 h = 22 h = 44 h = 66

AA -3.10 -2.48 -1.89 -1.74 -1.76

AXP -1.97 -1.92 -1.51 -1.08 -1.28

BA -2.48 -1.91 -1.44 -1.05 -1.08

CAT -3.08 -1.88 -1.29 -1.20 -1.38

GE -2.52 -2.16 -1.92 -1.64 -1.48

HD -2.68 -2.25 -1.92 -1.46 -1.34

HON -2.14 -1.62 -2.05 -2.15 -2.05

IBM -2.33 -1.91 -1.55 -1.33 -1.34

JPM -2.41 -2.16 -2.06 -1.93 -1.56

KO -1.76 -1.51 -1.46 -1.46 -1.54

# of lags: 0.75n1/3

h = 5 h = 10 h = 22 h = 44 h = 66

AA -2.71 -2.63 -2.66 -3.15 -3.83

AXP -1.71 -2.06 -2.14 -1.74 -2.47

BA -2.06 -2.09 -2.16 -2.07 -2.53

CAT -2.60 -2.04 -1.88 -2.15 -2.74

GE -2.18 -2.31 -2.60 -2.78 -3.11

HD -2.22 -2.45 -2.76 -2.76 -3.01

HON -1.80 -1.73 -2.52 -3.42 -3.98

IBM -1.97 -2.07 -2.23 -2.51 -3.09

JPM -2.05 -2.34 -2.85 -3.73 -3.21

KO -1.51 -1.63 -2.04 -2.43 -3.17

Notes: DM t-statistic for the mean difference between the OOS loss, where the loss difference is defined as ∆L =

L(x̃t,h, σ̃
2
t,h(θ̂

c
T ))− L(x̃t,h, σ̃

2
t,h(θ̂

d
T )). Two tables use different number of lags in the estimator of the asymptotic variance-

covariance matrix of sample average of loss difference. Given the number of out-of-sample periods n for each forecasting

horizon h, the number of lags is 0.75n1/3 = 7 for all h. This value is exceeded by the number of lags h − 1, except when

h = 5. Considering a two-sided test, the null hypothesis of equal predictive performance is rejected at 5% significance level

if absolute value of t-statistic exceeds 1.96.

Table 11. Out-of-sample performance: DM t-statistic for MEM-GARCH(1,1) model.

# of lags: h− 1

h = 5 h = 10 h = 22 h = 44 h = 66

AA -0.93 -1.56 -1.80 -1.31 -1.32

AXP -0.38 -1.13 -1.51 -1.03 -1.34

BA -0.98 -0.59 -0.56 -0.72 -1.11

CAT -2.76 -2.08 -1.72 -1.63 -1.66

GE -0.76 -1.58 -1.78 -1.43 -1.46

HD -0.89 -1.26 -1.44 -1.28 -1.30

HON 1.47 -0.15 -0.34 -1.14 -1.44

IBM -1.26 -1.19 -1.11 -1.19 -1.02

JPM -0.70 -1.02 -1.53 -1.14 -1.28

KO -1.03 -0.88 -1.12 -0.78 -1.01

# of lags: 0.75n1/3

h = 5 h = 10 h = 22 h = 44 h = 66

AA -0.93 -1.58 -2.04 -2.07 -2.76

AXP -0.37 -1.15 -1.76 -1.47 -2.45

BA -0.92 -0.60 -0.63 -1.15 -2.08

CAT -2.58 -2.18 -2.34 -3.10 -3.89

GE -0.74 -1.63 -2.09 -2.22 -2.67

HD -0.91 -1.31 -1.92 -2.24 -2.73

HON 1.45 -0.15 -0.40 -1.64 -2.28

IBM -1.23 -1.23 -1.43 -2.24 -2.21

JPM -0.68 -1.03 -1.86 -1.75 -2.30

KO -0.99 -0.90 -1.36 -1.32 -1.97

Notes: DM t-statistic for the mean difference between the OOS loss, where the loss difference is defined as ∆L =

L(x̃t,h, σ̃
2
t,h(θ̂

c
T ))− L(x̃t,h, σ̃

2
t,h(θ̂

d
T )). Two tables use different number of lags in the estimator of the asymptotic variance-

covariance matrix of sample average of loss difference. Given the number of out-of-sample periods n for each forecasting

horizon h, the number of lags is 0.75n1/3 = 7 for all h. This value is exceeded by the number of lags h − 1, except when

h = 5. Considering a two-sided test, the null hypothesis of equal predictive performance is rejected at 5% significance level

if absolute value of t-statistic exceeds 1.96.
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Table 12. Out-of-Sample Performance for cGARCH(1,1) Models.

Standard cGARCH(1,1)

h = 5 h = 10 h = 22 h = 44 h = 66

he = 4 he = 4 he = 3 he = 2 he = 2

AA 0.00 -0.01 -0.02 -0.04 -0.07

he = 5 he = 9 he = 14 he = 14 he = 14

AXP 0.00 -0.01 -0.02 -0.03 -0.05

he = 3 he = 9 he = 10 he = 10 he = 10

BA 0.00 0.00 -0.01 -0.02 -0.02

he = 4 he = 4 he = 4 he = 4 he = 3

CAT -0.01 -0.01 -0.03 -0.09 -0.15

he = 5 he = 10 he = 20 he = 24 he = 24

GE 0.00 0.00 -0.01 -0.02 -0.03

he = 5 he = 10 he = 6 he = 6 he = 6

HD 0.00 0.00 -0.01 -0.02 -0.04

he = 3 he = 4 he = 4 he = 3 he = 4

HON -0.01 -0.01 -0.01 -0.02 -0.02

he = 5 he = 9 he = 7 he = 5 he = 5

IBM 0.00 0.00 0.00 0.01 0.02

he = 3 he = 3 he = 3 he = 2 he = 2

JPM -0.01 -0.02 -0.05 -0.11 -0.15

he = 4 he = 4 he = 4 he = 2 he = 2

KO 0.00 0.00 0.00 0.01 0.02

MEM-cGARCH(1,1)

h = 5 h = 10 h = 22 h = 44 h = 66

he = 2 he = 10 he = 12 he = 12 he = 12

AA 0.00 -0.01 -0.02 -0.04 -0.07

he = 5 he = 10 he = 14 he = 20 he = 14

AXP 0.00 -0.01 -0.02 -0.03 -0.05

he = 5 he = 10 he = 5 he = 2 he = 2

BA 0.00 0.00 -0.01 -0.02 -0.02

he = 5 he = 10 he = 12 he = 12 he = 12

CAT -0.01 -0.01 -0.03 -0.09 -0.15

he = 5 he = 7 he = 20 he = 18 he18

GE 0.00 0.00 -0.01 -0.02 -0.03

he = 4 he = 10 he = 16 he = 26 he = 28

HD 0.00 0.00 -0.01 -0.02 -0.04

he = 4 he = 9 he = 3 he = 2 he = 2

HON -0.01 -0.01 -0.01 -0.02 -0.02

he = 5 he = 7 he = 7 he = 7 he = 14

IBM 0.00 0.00 0.00 0.01 0.02

he = 5 he = 10 he = 22 he = 16 he = 14

JPM -0.01 -0.02 -0.05 -0.11 -0.15

he = 4 he = 10 he = 4 he = 2 he = 2

KO 0.00 0.00 0.00 0.01 0.02

Notes: Out-of-sample average loss difference for QLIKE loss function for 10 individual stocks. Loss difference is defined

as ∆L = L(x̃t,h, σ̃
2
t,h(θ̂

c
T )) − L(x̃t,h, σ̃

2
t,h(θ̂

d
T )), where L denotes the QLIKE loss evaluated at the QML estimator θ̂dT and

at the HM estimator θ̂cT . Considered forecasting horizons are h ∈ {5, 10, 22, 44, 66}. Horizon at which θ̂cT is obtained does

not necessarily match forecasting (evaluation) horizon. For each forecasting horizon and individual stock we report the

estimation horizon (he) which minimizes the average QLIKE loss evaluated at the HM estimator.

Table 13. Out-of-sample performance: DM t-statistic for standard cGARCH(1,1) model.

# of lags : h− 1

h = 5 h = 10 h = 22 h = 44 h = 66

AA -2.14 -1.91 -1.97 -1.81 -1.37

AXP -2.81 -2.52 -1.76 -1.74 -2.05

BA -1.85 -1.58 -0.97 -0.96 -0.86

CAT -3.30 -2.73 -2.25 -2.49 -2.77

GE -2.88 -1.94 -1.37 -1.24 -1.37

HD -2.96 -2.21 -2.32 -0.97 -0.79

HON 0.62 -0.69 -0.21 0.86 0.98

IBM -2.76 -2.50 -2.26 -1.34 -0.62

JPM -1.81 -1.59 -1.62 -1.97 -1.98

KO -1.44 -1.47 -0.99 -1.61 -1.43

# of lags: 0.75n1/3

h = 5 h = 10 h = 22 h = 44 h = 66

AA -1.88 -2.01 -2.58 -2.43 -1.73

AXP -2.49 -2.69 -2.37 -2.91 -4.07

BA -1.66 -1.71 -1.42 -1.80 -1.83

CAT -2.90 -2.91 -2.96 -3.73 -3.67

GE -2.64 -2.08 -1.96 -2.42 -3.03

HD -2.53 -2.35 -2.88 -1.78 -1.67

HON 0.68 -0.64 -0.23 1.42 1.66

IBM -2.66 -2.51 -2.70 -2.01 -1.15

JPM -1.53 -1.73 -2.30 -3.53 -4.13

KO -1.27 -1.58 -1.42 -2.58 -2.53

Notes: DM t-statistic for the mean difference between the OOS loss, where the loss difference is defined as ∆L =

L(x̃t,h, σ̃
2
t,h(θ̂

c
T ))− L(x̃t,h, σ̃

2
t,h(θ̂

d
T )). Two tables use different number of lags in the estimator of the asymptotic variance-

covariance matrix of sample average of loss difference. Given the number of out-of-sample periods n for each forecasting

horizon h, the number of lags is 0.75n1/3 = 7 for all h. This value is exceeded by the number of lags h − 1, except when

h = 5. Considering a two-sided test, the null hypothesis of equal predictive performance is rejected at 5% significance level

if absolute value of t-statistic exceeds 1.96.
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Table 14. Out-of-sample performance: DM t-statistic for MEM-cGARCH(1,1) model.

# of lags: h− 1

h = 5 h = 10 h = 22 h = 44 h = 66

AA -0.53 -1.69 -1.65 -1.60 -1.54

AXP -1.59 -1.98 -1.91 -2.02 -2.12

BA -1.00 -1.48 -1.37 -1.55 -1.53

CAT -2.29 -2.11 -1.93 -1.63 -1.57

GE -0.97 -1.00 -1.11 -1.04 -1.13

HD -1.25 -1.24 -1.27 -1.09 -1.08

HON -1.81 -1.88 -1.39 -1.38 -1.36

IBM -0.48 -0.67 -0.17 0.56 0.99

JPM -2.73 -2.11 -1.95 -2.15 -2.07

KO -0.82 -0.59 0.28 1.54 1.91

# of lags: 0.75n1/3

h = 5 h = 10 h = 22 h = 44 h = 66

AA -0.51 -1.78 -2.36 -2.99 -3.41

AXP -1.53 -2.10 -2.58 -3.52 -4.37

BA -0.96 -1.57 -1.90 -2.72 -3.22

CAT -2.12 -2.22 -2.54 -2.71 -3.23

GE -0.92 -1.05 -1.53 -1.93 -2.38

HD -1.17 -1.32 -1.64 -1.82 -2.19

HON -1.70 -1.99 -1.90 -2.33 -2.65

IBM -0.46 -0.71 -0.24 1.07 2.26

JPM -2.48 -2.23 -2.49 -3.13 -3.46

KO -0.75 -0.62 0.39 2.81 3.88

Notes: DM t-statistic for the mean difference between the OOS loss, where the loss difference is defined as ∆L =

L(x̃t,h, σ̃
2
t,h(θ̂

c
T ))− L(x̃t,h, σ̃

2
t,h(θ̂

d
T )). Two tables use different number of lags in the estimator of the asymptotic variance-

covariance matrix of sample average of loss difference. Given the number of out-of-sample periods n for each forecasting

horizon h, the number of lags is 0.75n1/3 = 7 for all h. This value is exceeded by the number of lags h − 1, except when

h = 5. Considering a two-sided test, the null hypothesis of equal predictive performance is rejected at 5% significance level

if absolute value of t-statistic exceeds 1.96.
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